Degradation rate of bioresorbable materials
Prediction and evaluation

Edited by
Fraser Buchanan

Woodhead Publishing and Maney Publishing
on behalf of
The Institute of Materials, Minerals & Mining

CRC Press
Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED
Cambridge England
Contributor contact details x
Preface xiii

Part I: Introduction 1

1 An overview of bioresorbable materials 3
 K. J. L. Burg and D. E. Orr, Clemson University, USA
 1.1 Introduction 3
 1.2 Degradation mechanisms 4
 1.3 Resorbable ceramics 5
 1.4 Resorption process 6
 1.5 Intended medical application guides the design of an absorbable implant 7
 1.6 Understanding the in vivo environment 8
 1.7 Naturally-derived materials 10
 1.8 Synthesized polymers 11
 1.9 Fabrication of absorbable materials 13
 1.10 Sterilization of absorbable implants 16
 1.11 Commentary 16
 1.12 Sources for further information and advice 17
 1.13 References 17

2 The biological environment for bioresorbable materials 19
 D. Lickorish, N. Zebardast and J. E. Davies, University of Toronto, Canada
 2.1 Introduction to a hostile environment 19
 2.2 Blood 22
 2.3 Plasma protein cascades 28
 2.4 Fibrin formation 31
 2.5 Biomaterial interactions 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Host response to injury</td>
<td>34</td>
</tr>
<tr>
<td>2.7</td>
<td>Practical demonstration of acute inflammation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The triple response</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>Chronic inflammation</td>
<td>37</td>
</tr>
<tr>
<td>2.9</td>
<td>Conclusion and future trends</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>

Part II: Degradation mechanisms

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Synthetic bioresorbable polymers</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>R. E. Cameron and A. Kamvari-Moghaddam, University of Cambridge, UK</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Bioresorbable polymers</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Degradation of aliphatic polyesters</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Factors affecting aliphatic polymer degradation</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Processing and devices</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Sources of further information and advice</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Natural bioresorbable polymers</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>W. Paul and C. P. Sharma, Sree Chitra Tirunal Institute for Medical Sciences and Technology, India</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Chitin and chitosan</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Alginites</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Cellulose</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Acknowledgments</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>References</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Bioresorbable ceramics</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>M. Bohner, Dr Robert Mathys Foundation, Switzerland</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Solubility</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Kinetics</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>In vivo transformation</td>
<td>102</td>
</tr>
<tr>
<td>5.5</td>
<td>Other bioresorbable ceramics</td>
<td>104</td>
</tr>
<tr>
<td>5.6</td>
<td>Modelling resorption</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Future trends</td>
<td>108</td>
</tr>
</tbody>
</table>
Part III: Bioresorption test methods

6 In vitro physicochemical test methods to evaluate bioresorbability
S. Li, University Montpellier I, France
6.1 Introduction
6.2 Protocol for in vitro degradation studies
6.3 In vitro physicochemical test methods
6.4 Conclusion
6.5 References

7 In vitro biological test methods to evaluate bioresorbability
G. Mabilleau and A. Sabokbar, University of Oxford, UK
7.1 Introduction
7.2 Methods of degradation of biomaterials
7.3 Methods of assessing resorbability in vitro
7.4 Characterization of the resorbability in vitro: Microscopic analysis of the surface
7.5 References

8 In vivo test methods to evaluate bioresorbability
S. A. Clarke and G. R. Jordan, Queen’s University Belfast, Northern Ireland
8.1 Introduction
8.2 In vivo models
8.3 Outcome measures
8.4 Histomorphometric measurements
8.5 Imaging
8.6 Summary
8.7 References

9 Modelling of the degradation processes for bioresorbable polymers
D. Farrar, Smith & Nephew Research Centre, UK
9.1 Introduction
9.2 Overview of degradation processes for bioresorbable polymers
9.3 Modelling of key processes
9.4 Modelling of surface erosion
9.5 Temperature effects
9.6 Future trends
9.7 Conclusion
9.8 References

Part IV: Factors influencing bioresorption

10 Influence of processing, sterilisation and storage on bioresorbability
F. Buchanan and D. Leonard, Queen's University Belfast, Northern Ireland
10.1 Introduction
10.2 Processing techniques
10.3 Processing-related degradation
10.4 Sterilisation
10.5 Maximising shelf-life: Packaging and storage
10.6 Additives for reducing degradation
10.7 Conclusion
10.8 References

11 Influence of porous structure on bioresorbability: Tissue engineering scaffolds
P. Tomlins, National Physical Laboratory, UK
11.1 Introduction
11.2 Materials
11.3 Processing
11.4 Characterisation of tissue scaffolds
11.5 Methods for monitoring the degradation of polymeric tissue scaffolds
11.6 Conclusion
11.7 Acknowledgement
11.8 References

Part V: Clinical application

12 Influence of clinical application on bioresorbability: Host response
12.1 Introduction 267
12.2 Host response cascade 268
12.3 Host factors influencing biodegradation 271
12.4 Influence of site of implantation on biodegradation 283
12.5 Influence of species and repeated implantation 285
12.6 Adverse outcomes of biodegradable polymers 285
12.7 Mechanisms of in vivo biodegradation 286
12.8 Material factors influencing biodegradation 290
12.9 Biomaterial design parameters 298
12.10 Conclusion 302
12.11 References 302

13 Scaffold and implant design: Considerations relating to characterization of biodegradability and bioresorbability 319
D. W. Hutmacher, Queensland University of Technology, Australia and C. X. F. Lam, National University of Singapore, Singapore
13.1 Introduction 319
13.2 Biodegradation and bioresorption 320
13.3 Hydrolytic degradation of polycaprolactone 323
13.4 Hydrolytic degradation of medical polycaprolactone (mPCL) versus research polycaprolactone (PCL) 325
13.5 In vivo degradation of polycaprolactone-based scaffolds 343
13.6 Conclusions 352
13.7 References 353

14 Drug release from bioresorbable materials 357
M. Westwood and D. S. Jones, Queen’s University of Belfast, Northern Ireland
14.1 Introduction 357
14.2 Examples of biodegradable pharmaceutical polymers 359
14.3 Mechanisms of drug release from biodegradable polymers 373
14.4 Drug delivery applications of biodegradable polymers 377
14.5 Conclusions 385
14.6 References 385

Index 393