Biomedical Applications of Synchrotron Infrared Microspectroscopy

Edited by

David Moss
Synchrotron Light Source ANKA, Karlsruhe Research Center, Karlsruhe, Germany

RSC Publishing
Contents

Section 1: Fundamentals

Chapter 1 Vibrational Spectroscopy: What Does the Clinician Need? 3
Sheila E. Fisher, Andrew T Harris, Nitish Khanna and Josep Sule-Suso

1.1 Introduction 3
1.2 Vibrational Spectroscopy in Cancer 6
 1.2.1 Introduction 6
 1.2.2 Screening, Early Diagnosis and Surveillance 7
 1.2.3 Therapy 9
1.3 Vascular Disease 13
 1.3.1 Introduction 13
 1.3.2 Pathophysiology 13
 1.3.3 Vibrational Spectroscopy in Vascular Disease 15
1.4 Microbiology and Infective Disease 17
1.5 Conclusions 20
References 20

Chapter 2 Mid-infrared Spectroscopy: The Basics 29
John M. Chalmers

2.1 Introduction 29
2.2 Mid-infrared Radiation and Mid-infrared Spectroscopy 30
 2.2.1 Electromagnetic Radiation: What is it? 30
 2.2.2 Mid-infrared Radiation: What is it? 31
 2.2.3 What is Mid-infrared Spectroscopy? 32
 2.2.4 Quantitative Mid-infrared Spectroscopy: The Basics 34
2.3 Mid-infrared Spectroscopy Instrumentation
 2.3.1 What is FT-IR? Why FT-IR? 35
 2.3.2 FT-IR Microscopy 41
 2.3.3 Why Synchrotron-sourced Mid-infrared FT-IR Microspectroscopy? 42

2.4 Mid-infrared Spectroscopy: Sampling Techniques and Practices
 2.4.1 Transmission Sampling Technique 46
 2.4.2 Transflection Sampling Technique 47
 2.4.3 Attenuated Total Reflection (ATR) Technique 48
 2.4.3.1 ATR Microspectroscopy 51
 2.4.4 Near-field FT-IR Microscopy 52

2.5 FT-IR Mapping and Imaging Techniques 54

2.6 Mid-infrared Spectroscopy: Data Analysis Techniques 55

2.7 How Does Mid-infrared Spectroscopy Relate to and Differ from Near-infrared, Far-infrared and Raman Spectroscopy?
 2.7.1 Fundamental Molecular Vibrations: Mid-infrared and Raman Bands 56
 2.7.2 Near-infrared Spectroscopy 61
 2.7.3 Far-infrared/THz Spectroscopy 61
 2.7.4 Raman Spectroscopy 62

References 63

Chapter 3 Infrared Synchrotron Radiation Beamlines: High Brilliance Tools for IR Spectromicroscopy 67
Augusto Marcelli and Gianfelice Cinque

3.1 Introduction 67

3.2 Infrared Synchrotron Radiation: Historical Background 69

3.3 Basic Principles of Synchrotron Radiation 72
 3.3.1 Synchrotron Radiation Properties 73
 3.3.1.1 Brilliance 74
 3.3.1.2 Collimation 75
 3.3.1.3 Polarization 76
 3.3.1.4 Stability 76
 3.3.1.5 Time Structure 77

3.4 What is an SR Beamline? 78

3.5 SR Beamlines and IR Instrumentation for Spectroscopy and Microscopy 82
 3.5.1 IR Spectromicroscopy 83

3.6 Synchrotron Radiation and Imaging IR 87

3.7 Biomedical Applications at IRSR Beamlines 88

3.8 Status and Perspectives of IRSR Facilities 94
Contents

5.3.5.1 FTIR Studies 177
5.3.5.2 Raman Studies 180
5.4 Conclusions 183
References 185

Chapter 6 Data Acquisition and Analysis in Biomedical Vibrational Spectroscopy 192
Peter Lasch and Wolfgang Petrich

6.1 Introduction 192
6.2 Standardisation of the Infrared Spectral Measurements 193
6.3 Assessing the Quality of the Obtained Spectra 204
6.4 Spectral Pre-processing 206
6.5 Data Analysis: Quantitative Analysis 209
6.6 Data Analysis: Classification 210
6.6.1 Unsupervised Classification Analysis 210
6.6.2 Supervised Classification Analysis 214
6.6.3 The DPR Approach 216
6.7 The Role of Independent Validation 217
6.8 Conclusions 220
6.9 Acknowledgements 221
Appendix A: Noise and Reproduction Error 221
Appendix B: Differentiation Indices 223
References 223

Chapter 7 Synchrotron Radiation as a Source for Infrared Microspectroscopic Imaging with 2D Multi-Element Detection 226
G. L. Carr, L. M. Miller and P. Dumas

7.1 Introduction 226
7.2 Optical Issues for Infrared Microspectroscopy 228
7.2.1 The Standard Infrared Microspectrometer 228
7.2.2 The Schwarzschild Microscope Objective 229
7.2.3 The FPA Infrared Microspectrometer 230
7.3 The Synchrotron Infrared Source 232
7.3.1 Basic Properties of the Synchrotron Infrared Source 233
7.3.2 Infrared Microspectroscopy using the Synchrotron Source 234
7.4 Imaging at the Diffraction Limit 235
7.4.1 Imaging and the Point Spread Function 235
7.4.2 Performance with the Synchrotron Source and a Single-Element Detector 238
7.4.3 Comparing Synchrotron IR Imaging with Internal Source-based FPA Imaging 240
7.4.4 Diffraction Effects and Issues for PSF Deconvolution 244
7.5 Focal Plane Array IR Microspectroscopy with the Synchrotron Source 248
7.5.1 Matching the Dipole Bend Source to the FPA Microspectrometer 249
7.5.2 Initial Results using the Synchrotron Source and FPA 250
7.5.3 Basic PSF Deconvolution with FPA Microspectrometers 253
7.5.4 Opportunities for Advanced 2D Image Deconvolution 254
7.6 Conclusions 255
References 256

Chapter 8 Scattering in Biomedical Infrared Spectroscopy 260
Paul Bassan and Peter Gardner
8.1 Introduction to Scattering in Infrared Spectroscopy 260
8.2 Mie Scattering 262
8.3 Complex Refractive Index 262
 8.3.1 The Imaginary Refractive Index, k 262
 8.3.2 The Real Refractive Index, n 263
8.4 Resonant Mie Scattering (RMieS) 264
8.5 Extended Multiplicative Signal Correction (EMSC) 266
8.6 Resonant Mie Scattering Correction using the Extended Multiplicative Signal Correction (RMieS-EMSC) 268
 8.6.1 Construction of Mie Scattering Efficiency Database 269
 8.6.2 Decomposition of the Resonant Mie Scattering Efficiency Database, \(Q \) 270
8.7 Evaluation of the RMieS-EMSC Algorithm 271
8.8 Correction of Real Spectra 272
8.9 Conclusions 274
References 275

Section 3: Case Studies

Chapter 9 Synchrotron Based FTIR Spectroscopy in Lung Cancer. Is there a Niche? 279
Josep Sule-Susso
9.1 Introduction 279
9.2 Lung Cancer Screening 280
Chapter 10 Head and Neck Cancer: Observations from Synchrotron-sourced Mid-infrared Spectroscopy Investigations
Mark J. Tobin, John M. Chalmers, Andrew T. Harris and Sheila E. Fisher

10.1 Introduction 291
10.2 Experimental Work 293
10.3 Mid-infrared Synchrotron Radiation FT-IR Studies of Oral Tissue Sections 295
10.4 Mid-infrared Synchrotron Radiation FT-IR Studies of Cultured Cells 308
10.5 Raman Studies of H&N Samples 312
10.6 Conclusions 313
References 314

Chapter 11 Single Cell Analysis of TSE-infected Neurons
Ariane Kretlow, Janina Kneipp, Peter Lasch, Michael Beekes, Lisa Miller and Dieter Naumann

11.1 Introduction 315
11.2 IR-Spectroscopy and the Composition of Complex Biological Material 316
11.3 Why apply Synchrotron FTIR Microspectroscopy (SFTIRM)? 321
11.4 Materials and Methods 322
11.4.1 The Study Design 322
11.4.2 Animal Experiments and Sample Preparation 322
11.4.3 Data Acquisition Techniques 323
11.4.4 Data Evaluation Techniques 324
11.5 Results 326
11.6 Assessment, Discussion and Conclusions 330
Acknowledgements 333
References 333
Chapter 12 Monitoring the Effects of Cisplatin Uptake in Rat Glioma Cells: A Preliminary Study Using Fourier Transform Infrared Synchrotron Microspectroscopy

12.1 Introduction 339
12.2 Methodology 341
12.2.1 Cell Culture, Cisplatin Preparation and Treatment 341
12.2.2 Synchrotron FTIR Microspectroscopy 341
12.2.3 Neural Network Classification 342
12.3 Results 343
12.4 Discussion 346
12.5 Conclusions 348
References 349

Chapter 13 Mid-Infrared Reflectivity of Mouse Atheromas: A Case Study

Hoi-Ying N. Holman and Francis G. Blankenberg

13.1 Introduction 351
13.2 Existing Diagnostic Methods 353
13.3 Pathologic and Biochemical Features of Vulnerable Plaques 354
13.4 Concept of Mid-infrared Reflectivity of Atherosclerotic Aorta 356
13.5 Mid-infrared Reflectivity of Experimental Atherosclerosis 358
13.6 Discussion 362
Acknowledgements 366
References 366

Subject Index 369