biodata mining
and visualization
novel approaches

ilkka havukkala
Intellectual Property Office of New Zealand, New Zealand
Contents

Preface v

Acknowledgement vii

About the Author viii

1 Introduction to Modern Molecular Biology 1
 1.1 Cells store large amounts of information in DNA 1
 1.2 Cells process complex information 7
 1.3 Cellular life is chemically complex and somewhat stochastic 12
 1.4 Challenges in analyzing complex biodata 19

References 19

2 Biodata Explosion 21
 2.1 Primary sequence and structure data 22
 2.1.1 DNA sequence databases 22
 2.1.2 Protein sequence databases 27
 2.1.3 Molecular structure databases 28
 2.2 Secondary annotation data 31
 2.2.1 Motif annotations 32
 2.2.2 Gene function annotations 35
 2.2.3 Genomic annotations 36
 2.2.4 Inter-species phylogeny and gene family annotations 36

References 19
2.3 Experimental and personalized data
 2.3.1 DNA expression profiles
 2.3.2 Proteomics data and degradomics
 2.3.3 Protein expression profiles, 2D gel and protein interaction data
 2.3.4 Metabolomics and metabolic pathway databases
 2.3.5 Personalized data
2.4 Semantic and processed text data
 2.4.1 Ontologies
 2.4.2 Text-mined annotation data
2.5 Integrated and federated databases
References

3 Local Pattern Discovery and Comparing Genes and Proteins
 3.1 DNA/RNA motif discovery
 3.1.1 Single motif models: MEME, AlignAce etc.
 3.1.2 Multiple motif models: LOGOS and MotifRegressor
 3.1.3 Informative k-mers approach
 3.2 Protein motif discovery
 3.2.1 InterProScan and other traditional methods
 3.2.2 Protein k-mer and other string based methods
 3.3 Genetic algorithms, particle swarms and ant colonies
 3.3.1 Genetic algorithms
 3.3.2 Particle swarm optimization
 3.3.3 Ant colony optimization
 3.4 Sequence visualization
References

4 Global Pattern Discovery and Comparing Genomes
 4.1 Alignment-based methods
 4.1.1 Pairwise genome-wide search algorithms: LAGAN, AVID etc.
6.6 Text mining bioliterature for automated annotation 192
 6.6.1 Natural language processing (NLP) 193
 6.6.2 Semantic profiling 197
 6.6.3 Matrix factorization methods 199

References 205

7 New Methods for Genomics Data: SVM and Others 212
 7.1 SVM kernels 212
 7.2 SVM trees 219
 7.3 Methods for microarray data 221
 7.3.1 Gene selection algorithms 223
 7.3.2 Gene selection by consistency methods 225
 7.4 Genome as a time series and discrete wavelet transform 227
 7.5 Parameterless clustering for gene expression 231
 7.6 Transductive confidence machines, conformal predictors and ROC isometrics 232
 7.7 Text compression methods for biodata analysis 236

References 238

8 Integration of Multimodal Data: Toward Systems Biology 245
 8.1 Comparative genome annotation systems 246
 8.2 Phylogenetics methods 249
 8.3 Network inference from interaction and coexpression data 253
 8.4 Bayesian inference, association rule mining and Petri nets 258

References 262

9 Future Challenges 266
 9.1 Network analysis methods 266
 9.2 Unsupervised and supervised clustering 269
 9.3 Neural networks and evolutionary methods 270
 9.4 Semantic web and ontologization of biology 273
9.5 Biological data fusion 277
9.6 Rise of the GPU machines 279
References 290

Index 297