Chemical Reaction Engineering and Reactor Technology

Tapio Salmi
Åbo Akademi
Åbo-Turku, Finland

Jyri-Pekka Mikkola
Umeå University,
Umeå, Sweden

Johan Wärnå
Åbo Akademi
Åbo-Turku, Finland
Contents

Preface xix

Notations xxiii

Chapter 1 Introduction 1

1.1 PRELIMINARY STUDIES 4
 1.1.1 Reaction Stoichiometry, Thermodynamics, and Synthesis Routes 4

1.2 LABORATORY EXPERIMENTS 4

1.3 ANALYSIS OF THE EXPERIMENTAL RESULTS 5

1.4 SIMULATION OF REACTOR MODELS 6

1.5 INSTALLATION OF A PILOT-PLANT UNIT 6

1.6 CONSTRUCTION OF THE FACILITY IN FULL SCALE 6

REFERENCES 7

Chapter 2 Stoichiometry and Kinetics 9

2.1 STOICHIOMETRIC MATRIX 10

2.2 REACTION KINETICS 12
 2.2.1 Elementary Reactions 13
 2.2.2 Kinetics of Nonelementary Reactions: Quasi-Steady-State and Quasi-Equilibrium Approximations 16
 2.2.2.1 Ionic and Radical Intermediates 18
Chapter 3 Homogeneous Reactors

3.1 Reactors for Homogeneous Reactions 27
3.2 Homogeneous Tube Reactor with a Plug Flow 34
3.2.1 Mass Balance 35
3.2.2 Energy Balance 37
3.3 Homogeneous Tank Reactor with Perfect Mixing 40
3.3.1 Mass Balance 40
3.3.2 Energy Balance 41
3.4 Homogeneous BR 44
3.4.1 Mass Balance 44
3.4.2 Energy Balance 45
3.5 Molar Amount, Mole Fraction, Reaction Extent, Conversion, and Concentration 48
3.5.1 Definitions 48
3.5.2 Relation between Molar Amount, Extent of Reaction, Conversion, and Molar Fraction 51
3.5.2.1 A System with a Single Chemical Reaction 51
3.5.2.2 A System with Multiple Chemical Reactions 52
3.5.3 Relationship between Concentration, Extent of Reaction, Conversion, and Volumetric Flow Rate in a Continuous Reactor 55
3.5.3.1 Gas-Phase Reactions 55
3.5.3.2 Liquid-Phase Reactions 57
3.5.4 Relationship between Concentration, Extent of Reaction, Conversion, and Total Pressure in a BR 59
3.5.4.1 Gas-Phase Reactions 59
3.5.4.2 Liquid-Phase Reactions 60
3.6 Stoichiometry in Mass Balances 61
3.7 Equilibrium Reactor: Adiabatic Temperature Change 66
3.7.1 Mass and Energy Balances 66
3.8 Analytical Solutions for Mass and Energy Balances 68
3.8.1 Multiple Reactions 71
3.8.1.1 First-Order Parallel Reactions 71
3.8.1.2 Momentaneous and Integral Yield for Parallel Reactions 76
3.8.1.3 Reactor Selection and Operating Conditions for Parallel Reactions 78
3.8.1.4 First-Order Consecutive Reactions 80
3.8.1.5 Consecutive-Competitive Reactions 83
3.8.1.6 Product Distributions in PFRs and BRs 84
3.8.1.7 Product Distribution in a CSTR 87
3.8.1.8 Comparison of Ideal Reactors 88

3.9 Numerical Solution of Mass Balances for Various Coupled Reactions 89

REFERENCES 92

Chapter 4 Nonideal Reactors: Residence Time Distributions 93

4.1 Residency Time Distribution in Flow Reactors 93
 4.1.1 Residence Time as a Concept 93
 4.1.2 Methods for Determining RTDs 96
 4.1.2.1 Volume Element 96
 4.1.2.2 Tracer Experiments 97

4.2 Residence Time Functions 97
 4.2.1 Population Density Function $E(t)$ 98
 4.2.2 Distribution Functions $F(t)$ and $F^*(t)$ 100
 4.2.3 Intensity Function $\lambda(t)$ 101
 4.2.4 Mean Residence Time 101
 4.2.5 C Function 102
 4.2.6 Dimensionless Time 102
 4.2.7 Variance 103
 4.2.8 Experimental Determination of Residence Time Functions 103
 4.2.9 RTD for a CSTR and PFR 106
 4.2.10 RTD in Tube Reactors with a Laminar Flow 108

4.3 Segregation and Maximum Mixedness 113
 4.3.1 Segregation Model 113
 4.3.2 Maximum Mixedness Model 114

4.4 Tanks-in-Series Model 115
 4.4.1 Residence Time Functions for the Tanks-in-Series Model 116
 4.4.2 Tanks in Series as a Chemical Reactor 119
 4.4.3 Maximum-Mixed Tanks-in-Series Model 120
 4.4.4 Segregated Tanks in Series 120
 4.4.5 Comparison of Tanks-in-Series Models 121
 4.4.6 Existence of Micro- and Macrofluids 121

4.5 Axial Dispersion Model 123
 4.5.1 RTDs for the Axial Dispersion Model 123
 4.5.2 Axial Dispersion Model as a Chemical Reactor 128
 4.5.3 Estimation of the Axial Dispersion Coefficient 133

4.6 Tube Reactor with a Laminar Flow 134
 4.6.1 Laminar Reactor without Radial Diffusion 134
 4.6.2 Laminar Reactor with a Radial Diffusion: Axial Dispersion Model 137

REFERENCES 139
Chapter 5 Catalytic Two-Phase Reactors

5.1 Reactors for Heterogeneous Catalytic Gas- and Liquid-Phase Reactions

5.2 Packed Bed
- 5.2.1 Mass Balances for the One-Dimensional Model
- 5.2.2 Effectiveness Factor
 - 5.2.2.1 Chemical Reaction and Diffusion inside a Catalyst Particle
 - 5.2.2.2 Spherical Particle
 - 5.2.2.3 Slab
 - 5.2.2.4 Asymptotic Effectiveness Factors for Arbitrary Kinetics
 - 5.2.2.5 Nonisothermal Conditions
- 5.2.3 Energy Balances for the One-Dimensional Model
- 5.2.4 Mass and Energy Balances for the Two-Dimensional Model
- 5.2.5 Pressure Drop in Packed Beds

5.3 Fluidized Bed
- 5.3.1 Mass Balances According to Ideal Models
- 5.3.2 Kunii-Levenspiel Model for Fluidized Beds
 - 5.3.2.1 Kunii-Levenspiel Parameters

5.4 Parameters for Packed Bed and Fluidized Bed Reactors

References

Chapter 6 Catalytic Three-Phase Reactors

6.1 Reactors Used for Catalytic Three-Phase Reactions

6.2 Mass Balances for Three-Phase Reactors
- 6.2.1 Mass Transfer and Chemical Reaction
- 6.2.2 Three-Phase Reactors with a Plug Flow
- 6.2.3 Three-Phase Reactor with Complete Backmixing
- 6.2.4 Semibatch and BRs
- 6.2.5 Parameters in Mass Balance Equations

6.3 Energy Balances for Three-Phase Reactors
- 6.3.1 Three-Phase PFR
- 6.3.2 Tank Reactor with Complete Backmixing
- 6.3.3 Batch Reactor
- 6.3.4 Analytical and Numerical Solutions of Balance Equations for Three-Phase Reactors
 - 6.3.4.1 Sulfur Dioxide Oxidation
 - 6.3.4.2 Hydrogenation of Aromatics
 - 6.3.4.3 Carbonyl Group Hydrogenation

References
Chapter 7 Gas–Liquid Reactors

7.1 Reactors for Noncatalytic and Homogeneously Catalyzed Reactions

7.2 Mass Balances for Ideal Gas–Liquid Reactors
 7.2.1 Plug Flow Column Reactor
 7.2.2 Tank Reactor with Complete Backmixing
 7.2.3 Batch Reactor
 7.2.4 Fluxes in Gas and Liquid Films
 7.2.4.1 Very Slow Reactions
 7.2.4.2 Slow Reactions
 7.2.4.3 Reactions with a Finite Velocity
 7.2.5 Fluxes in Reactor Mass Balances
 7.2.6 Design of Absorption Columns
 7.2.7 Gas and Liquid Film Coefficients, Diffusion Coefficients, and Gas–Liquid Equilibria

7.3 Energy Balances for Gas–Liquid Reactors
 7.3.1 Plug Flow Column Reactor
 7.3.2 Tank Reactor with Complete Backmixing
 7.3.3 Batch Reactor
 7.3.4 Coupling of Mass and Energy Balances
 7.3.5 Numerical Solution of Gas–Liquid Reactor Balances

References

Chapter 8 Reactors for Reactive Solids

8.1 Reactors for Processes with Reactive Solids

8.2 Models for Reactive Solid Particles
 8.2.1 Definitions
 8.2.2 Product Layer Model
 8.2.2.1 First-Order Reactions
 8.2.2.2 General Reaction Kinetics: Diffusion Resistance as the Rate-Determining Step
 8.2.3 Shrinking Particle Model
 8.2.3.1 First-Order Reactions
 8.2.3.2 Arbitrary Reaction Kinetics: Diffusion Resistance in the Gas Film as the Rate-Determining Step

8.3 Mass Balances for Reactors Containing a Solid Reactive Phase
 8.3.1 Batch Reactor
 8.3.1.1 Particles with a Porous Product Layer
 8.3.1.2 Shrinking Particles
 8.3.2 Semibatch Reactor
 8.3.2.1 Particle with a Porous Product Layer
Chapter 9 Toward New Reactor and Reaction Engineering 327

9.1 HOW TO APPROACH THE MODELING OF NOVEL REACTOR CONCEPTS? 327

9.2 REACTOR STRUCTURES AND OPERATION MODES 329
 9.2.1 Reactors with Catalyst Packings 329
 9.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases 332
 9.2.1.2 Interfacial Transport 333
 9.2.1.3 Mass Balances for the Catalyst Particles 333
 9.2.1.4 Numerical Solution of the Column Reactor Model 334
 9.2.1.5 Concluding Summary 336
 9.2.2 Monolith Reactors 336
 9.2.2.1 Flow Distribution from CFD Calculations 338
 9.2.2.2 Simplified Model for Reactive Flow 340
 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341
 9.2.3 Fiber Reactor 342
 9.2.4 Membrane Reactor 344
 9.2.5 Microreactor 346

9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING 349
 9.3.1 Periodic Switching of Feed Composition 351
 9.3.2 Reverse Flow Reactors 352

9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355
 9.4.1 Ultrasound 356
 9.4.2 Microwaves 359
 9.4.3 Supercritical Fluids 362
 9.4.3.1 Case: Hydrogenation of Triglycerides 362
 9.4.4 Ionic Liquids 364
 9.4.4.1 Case: Heterogenized ILs as Catalysts 365

9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366
 9.5.1 Case Study: Delignification of Wood 367

9.6 SUMMARY 370
REFERENCES 371

Chapter 10 Chemical Reaction Engineering: Historical Remarks and Future Challenges 373

10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING 373

10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374
<table>
<thead>
<tr>
<th>Appendix 7</th>
<th>Correlations for Gas-Liquid Systems</th>
<th>563</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7.1 BUBBLE COLUMNS</td>
<td>563</td>
<td></td>
</tr>
<tr>
<td>A7.2 PACKED COLUMNS</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>A7.3 SYMBOLS</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>A7.4 INDEX</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>A7.5 DIMENSIONLESS NUMBERS</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>568</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix 8</th>
<th>Gas Solubilities</th>
<th>569</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>572</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix 9</th>
<th>Laboratory Reactors</th>
<th>573</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9.1 FLOW PATTERN IN LABORATORY REACTORS</td>
<td>573</td>
<td></td>
</tr>
<tr>
<td>A9.2 MASS TRANSFER RESISTANCE</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>A9.3 HOMOGENEOUS BR</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>A9.4 HOMOGENEOUS STIRRED TANK REACTOR</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>A9.5 FIXED BED IN THE INTEGRAL MODE</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>A9.6 DIFFERENTIAL REACTOR</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>A9.7 GRADIENTLESS REACTOR</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>A9.8 BRs FOR TWO- AND THREE-PHASE PROCESSES</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>A9.9 CLASSIFICATION OF LABORATORY REACTOR MODELS</td>
<td>584</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>585</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix 10</th>
<th>Estimation of Kinetic Parameters from Experimental Data</th>
<th>587</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10.1 COLLECTION OF KINETIC DATA</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>A10.2 INTEGRAL METHOD</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>A10.3 DIFFERENTIAL METHOD</td>
<td>594</td>
<td></td>
</tr>
<tr>
<td>A10.4 RECOMMENDATIONS</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td>A10.5 INTRODUCTION TO NONLINEAR REGRESSION</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td>A10.6 GENERAL APPROACH TO NONLINEAR REGRESSION IN CHEMICAL REACTION ENGINEERING</td>
<td>598</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>604</td>
<td></td>
</tr>
</tbody>
</table>

Author Index 605

Subject Index 607