Max Wolfsberg • W. Alexander Van Hook
Piotr Paneth
with contributions from Luís Paulo N. Rebelo

Isotope Effects

in the Chemical, Geological, and Bio Sciences

Springer
Contents

1 A Short History of Early Work on Isotopes .. 1
 1.1 Introduction ... 1
 1.2 From Dalton to the Discovery of Isotopes .. 2
 1.2.1 The Periodic Table ... 3
 1.3 From the Discovery of Isotopes through the Invention of the Mass Spectrograph by Aston 6
 1.3.1 The Historic Papers of Soddy and Fajans in 1913 and the Work Leading up to These Papers 6
 1.3.2 Further Elucidation of the Concepts of Elements and Isotopes Including Works of van den Broek, Moseley, Rutherford, Thomson, Aston and Lindemann ... 14
 1.3.3 The Work of Harkins on the Whole Number Rule 21
 1.3.4 Understanding the “Modern” Periodic Table 23
 1.4 The 1920s and 1930s Through the Discovery of Deuterium 25
 1.4.1 Early Work on Isotope Effects on Spectra 25
 1.4.2 The Discovery of Isotopes of Carbon, Nitrogen, and Oxygen, and Hydrogen 30
 1.4.3 Deuterium ... 31
 1.5 A Brief Look at the Position of Theoretical and Experimental Developments at the Time of the Discovery of Deuterium ... 33
 1.5.1 Quantum Theory ... 33
 1.5.2 Thermodynamics and Statistical Mechanics 33
 1.5.3 Instrumentation – The Mass Spectrometer 34
 References ... 34

2 The Born–Oppenheimer Approximation: Potential Energy Surfaces ... 37
 2.1 Introduction ... 37
 2.2 The Quantum Mechanical Schrödinger Equation of the Molecule ... 37
 2.3 The Separation of the Nuclear and Electronic Parts of the Schrödinger Equation ... 39
 2.3.1 Solutions of the Electronic Schrödinger Equation for Molecules 40
5 Condensed Phase Isotope Effects: Isotope Effects in Non-ideal Gases

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>5.2</td>
<td>Thermodynamic Formalism</td>
<td>139</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The Vapor Phase Reference</td>
<td>140</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The Condensed Phase</td>
<td>141</td>
</tr>
<tr>
<td>5.2.3</td>
<td>The Vapor Pressure Isotope Effect, Separated Isotopes</td>
<td>141</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Fractionation Factors</td>
<td>142</td>
</tr>
<tr>
<td>5.3</td>
<td>Reprise: Remarks Concerning the Partition Functions: The Relation of VPIE to Condensed Phase Molecular Properties and Vibrational Dynamics</td>
<td>144</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Application to Polyatomics</td>
<td>144</td>
</tr>
<tr>
<td>5.3.2</td>
<td>What Happens When Molecules Interact or Condense? A Simplified Physical Picture</td>
<td>145</td>
</tr>
<tr>
<td>5.4</td>
<td>VPIE's in Monatomic and Polyatomic Systems: Approximate Vibrational Analysis</td>
<td>147</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Dispersion Forces, Frequency Shifts on Condensation, and the VPIE</td>
<td>149</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Polyatomic Systems in Approximation: The Cell Model</td>
<td>150</td>
</tr>
<tr>
<td>5.4.3</td>
<td>A Further Approximation: The AB Equation</td>
<td>151</td>
</tr>
<tr>
<td>5.5</td>
<td>Non-ideal Gases: Virial Coefficient Isotope Effects (VCIE)</td>
<td>152</td>
</tr>
<tr>
<td>5.6</td>
<td>Further Discussion of VPIE's</td>
<td>154</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Representative Effects, Especially H/D Effects and Solvent Dependence</td>
<td>154</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Interpretation of VPIE Using Model Calculations: Preliminary Remarks</td>
<td>157</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Anharmonic Corrections</td>
<td>157</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Corrections for the Dielectric Effect</td>
<td>160</td>
</tr>
<tr>
<td>5.7</td>
<td>Some Examples</td>
<td>162</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Example #1: Monatomic Systems Reconsidered: Accurate Calculations</td>
<td>162</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Example #2: VPIE's of Ethylene Isotopomers</td>
<td>163</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Example #3: VPIE's of Benzene Isotopomers; Excess Pressures of Isotopomer Solutions</td>
<td>165</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Example #4: Water</td>
<td>166</td>
</tr>
<tr>
<td>5.8</td>
<td>Excess Free Energies in Solutions of Isotopes: Connections Between VPIE, the Liquid Vapor Fractionation Factor, α, and RPFR</td>
<td>170</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Excess Free Energies and Demixing in Isotopomer Solutions, Further Discussion</td>
<td>172</td>
</tr>
<tr>
<td>5.9</td>
<td>The Isotope Effect on TCR for the Superconducting/Resistive Transition in Metals</td>
<td>173</td>
</tr>
<tr>
<td>5.10</td>
<td>Isotope Effects on Solubility</td>
<td>174</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Liquid–Liquid Equilibria: Two Component Systems</td>
<td>174</td>
</tr>
</tbody>
</table>
5.10.2 Small Molecule Solutions Including Aqueous Systems ...175
5.10.3 IE's on Solubility of Gases in Liquids,
 Chromatographic IE's ...177
5.10.4 Solubility of Ionic Solids in H2O/D2O179
Further Reading ..180

6 Kinetic Isotope Effects Continued: Variational Transition
State Theory and Tunneling ...181

 6.1 Introduction: Transition State Theory, Variational
 Transition State Theory, and Tunneling181
 6.1.1 Transition State Theory181

 6.2 The Basics of Variational Transition State Theory
 and How It Differs from Conventional Transition State Theory ...182
 6.2.1 The Dividing Surface for the Reaction182
 6.2.2 The Minimum Energy Path185
 6.2.3 Classical Trajectory Calculations185
 6.2.4 The Differences Between TST and VTST186
 6.2.5 Locating Dividing Surfaces187
 6.2.6 Quantum Mechanical VTST187
 6.2.7 Isotope Effects, Comments188

 6.3 Tunneling ..189
 6.3.1 Tunneling in TST ..189
 6.3.2 Tunneling in VTST ...192
 6.3.3 Tunneling in Three Center Collinear Reactions196

 6.4 Tests of Variational Transition State Theory
 (Including Tunneling) ...199
 6.4.1 Collinear Three Center Reactions199

Further Reading ..201

7 Instrumentation and Experimental Techniques203

 7.1 Experimental Determination of Kinetic Isotope Effects203
 7.1.1 The Non-competitive or "Direct" Method203
 7.1.2 Simultaneous Non-competitive Measurements206
 7.1.3 KIE's of Enzyme Catalyzed Reactions
 by Isotope Perturbation207
 7.1.4 Competitive Measurements of KIE's208
 7.1.5 Error Analysis ..212

 7.2 Mass Spectrometry and Isotope Ratio Mass Spectrometry215
 7.2.1 Whole Molecule Mass Spectrometry215
 7.2.2 Isotope-Ratio Mass Spectrometry219

 7.3 NMR Measurements of Isotope Effects: Isotope
 Effects on NMR Spectra ..225
 7.3.1 Isotope Labeling in NMR Investigations
 of Molecular Structure225
 7.3.2 Rovibrational NMR Isotope Effects226
9 Isotope Effects in Nature: Geochemical and Environmental Studies .. 289
 9.1 Introduction .. 289
 9.2 Notation and Standards .. 290
 9.2.1 The Delta, δ, Notation .. 290
 9.2.2 Standards ... 290
 9.2.3 Conversion from One Standard to Another ... 292
 9.2.4 Remarks, Experimental Technique .. 292
 9.3 Geochemical Temperature Scales .. 293
 9.4 Isotope Hydrology; Rayleigh Fractionation ... 296
 9.4.1 Fractionation in Hydrology; the Meteoric Water Line 298
 9.4.2 Ice Cores ... 298
 9.4.3 Clay Cores; 13C Enrichment in Paleo-Organics .. 301
 9.5 Three Isotope Plots of Terrestrial and Extraterrestrial Samples 302
 9.6 Isotope Fractionation by Living or Once Living Organisms 302
 9.6.1 "We Are What We Eat, ± a Few per Mil" ... 303
 9.6.2 Isotope Fractionation and Dendrochronology of Bristlecone Pines 305
 9.6.3 18O as a Probe for Storm Patterns ... 306
 9.7 Coal, Petroleum and Natural Gas .. 307
 9.8 Further Examples, Food Authentication .. 308
 9.8.1 Food Authentication ... 308
 9.8.2 Athletic 'Doping' ... 310
 9.9 Stable Isotopes as Tracers in Biological, Agricultural, Nutritional and Medical Research .. 310
Suggestions for Further Reading ... 310

10 Kinetic Isotope Effects on Chemical Reactions .. 313
 10.1 Introduction ... 313
 10.2 KIE's on the "Simplest" Chemical Reaction (Hydrogen Atom + Diatomic Hydrogen) .. 313
 10.3 The Reaction Between Methane and Hydroxyl Radical ... 318
 10.4 Further Discussion, Heavy Atom Isotope Effects, Secondary Isotope Effects 319
 10.4.1 α-2° Isotope Effects ... 320
 10.4.2 β-2° Isotope Effects ... 322
 10.4.3 Steric Arguments and β, γ... 2° Isotope Effects .. 323
 10.4.4 Comment .. 324
 10.5 Relative Values for Deuterium and Tritium Isotope Effects: The Swain–Schaad Relation ... 325
 10.6 Alternative Reaction Paths, S_n2 and E2: Condensed and Vapor Phase Studies 327
 10.7 KIE's as Probes of Transition State Structure .. 329
 10.7.1 S_n2 Reactions for CN^- Attack on Substituted Benzyl Chlorides 330
11.8 Modeling Isotope Effects on Enzyme-Catalyzed Reactions 379
11.8.1 Examples of VTST QM/MM Calculations for Enzyme Reactions ... 380
11.8.2 QM/MM for Haloalkane Dehalogenase: TST Calculations .. 385
11.8.3 Comment .. 388
Reading List .. 388

12 Isotope Effects on Dipole Moments, Polarizability, NMR Shielding, and Molar Volume .. 389
12.1 Introduction .. 389
12.1.1 Dipole Moments, Polarizabilities and Hyperpolarizabilities .. 389
12.2 Dipole Moments and Their Isotope Effects .. 393
12.2.1 Experimental Methods .. 393
12.2.2 The IE on μ_0, Discussion .. 394
12.2.3 Dipole Moments for Diatomic Isotopomers .. 396
12.2.4 Theoretical Approaches .. 398
12.3 Induced Moments, Polarizability Isotope Effects .. 398
12.3.1 The Polarizability .. 398
12.3.2 Frequency Dependence .. 398
12.3.3 Experimental Methods, Results, Discussion .. 400
12.4 Isotope Effects on NMR Shielding .. 403
12.4.1 Introduction .. 403
12.4.2 Application of the Rovibrational Theory .. 403
12.5 Molar Volume Isotope Effects .. 406
12.5.1 The Bartell Mechanical Model for MVIE .. 408
12.5.2 Hydrogen Bonded Liquids .. 409
12.5.3 Limitations of the Mechanical Model, the Temperature Dependence .. 411
Reading List .. 412

13 Reduced Equations of State: Critical Property Isotope Effects 413
13.1 Introduction, Corresponding States .. 413
13.1.1 Equations of State, Corresponding States .. 413
13.2 Reference Systems; Critical Property Data for Some Isotopomer Pairs .. 414
13.2.1 The PVT Surface for Isotopomer Pairs .. 414
13.2.2 IE's of Reference Pairs .. 417
13.2.3 PVT Isotope Effects and the Modified Van der Waals Equation .. 418
13.2.4 Reference Systems, Isotope Effects .. 418
13.3 Critical Property Isotope Effects .. 419
13.3.1 Experimental Data .. 419