Complex Analysis with Applications to Flows and Fields

L.M.B.C. Campos

Director of the Center for Aeronautical and Space Science and Technology
Lisbon Technical University
Contents

List of Tables, Notes, Diagrams, Classifications, and Lists xvii
Series Preface xxi
Preface xxv
About the Author xxvii
Acknowledgments xxix
Mathematical Symbols xxxi
Physical Quantities xxxvii

Part 1 Complex Domain: Circuits and Stability 1

1 Complex Numbers and Quaternions 3
1.1 Peano (1889, 1891) Postulates for Natural Numbers 3
1.2 Irrational Numbers (Pythagoras, VI b.c.) and Dedekind (1858) Section . 5
1.3 Cartesian Parts: Real and Imaginary (Argand, 1806; Descartes, 1637a; Gauss, 1797) ... 6
1.4 Polar Coordinates: Modulus and Argument 6
1.5 Moivre’s Formula, Origin and Infinity 7
1.6 Conjugate and Reflection on the Origin and Axis 8
1.7 Power with Integral Exponent and Logarithm 9
1.8 Real, Imaginary, and Complex Exponential 9
1.9 Noncommutative Product of Quaternions (Hamilton, 1843) 10

2 Stability of an Equilibrium Position 13
2.1 Trajectory Following a Perturbation of Equilibrium 13
2.2 Oscillatory Motion with Constant Amplitude 14
2.3 Attenuation or Amplification and Stability or Instability 15
2.4 Damped Oscillation or Overstable Growth 15
2.5 General Relations for Amplitudes and Phases 16
2.6 Predominantly or Weakly Oscillatory Motion 16
2.7 Frequency and Attenuation/Amplification Factor 17
2.8 Differential Equation and Stability Criteria 18
2.9 Initial Conditions for Harmonic Oscillator 19

3 Addition, Product, and Inverses 23
3.1 Complex Addition and Rule of the Parallelogram 23
3.2 Modulus, Argument, and Triangular Equalities (Pythagoras, VI b.c.) . 24
3.3 Complex Product, Homothety, and Rotation 25
3.4 Meaning of the Imaginary Symbol “i” 26
3.5 Conjugate of the Sum, Product, and Inversion 27
3.6 Complex Representation of Real Quantities 27
3.7 Trigonometric Addition and Multiplication Formulas 28
3.8 Conjugate Complex and Triangular Inequalities 30
3.9 Generalized Schwartz (1890) or Polygonal Inequality 30
4 Impedance of Associations of Circuits
4.1 Inertia, Friction, and Elastic Forces .. 33
4.2 Free and Forced Motion of Circuit ... 34
4.3 Electrical Induction, Resistance, and Capacity 35
4.4 Decomposition of Impedance into Inductance and Reactance 36
4.5 Activity in Terms of the Velocity, Force, and Impedance 36
4.6 Mechanical Circuits in Parallel or Series 38
4.7 Electromechanical Analogy and Contrasting Laws 39
4.8 Comparison of Two Circuits in Parallel and in Series 40
4.9 Hybrid Associations of Three Circuits 40

5 Power, Root, and Logarithm ... 43
5.1 n-th Power as the \((n-1)\)-Times Iterated Product 43
5.2 Discrete Set of Points on Logarithmic Spiral 44
5.3 Inversion of the Power: Roots of Order \(n\) 45
5.4 Regular Polygon Contained in a Circle 45
5.5 Multiple Sums of Sines or Cosines of Equal Angles 47
5.6 Single-, Multi-, and Many-Valued Functions 48
5.7 Power with Complex Base and Exponent 49
5.8 Limiting Behavior at the Origin and Infinity 49
5.9 Vanishing and Divergence on Alternate Sectors 50

6 Electron in an Electromagnetic Field ... 53
6.1 Electromagnetic or Laplace–Lorentz Force 53
6.2 Uniform Fields and Larmor (1897) Frequency 54
6.3 Longitudinal Translation and Transverse Rotation 54
6.4 Components of the Velocity and Trajectory of the Particle 55
6.5 Linear, Circular, and Helical Motion ... 55
6.6 Linear Acceleration and Cycloid in the Plane 57
6.7 Elongated Helix and Plane Trochoid ... 59
6.8 Oval and Conical Helices and Magnetic Focusing 60
6.9 Separation of Isotopes in a Mass Spectrograph 62

7 Multivalued Functions, Branch-Points, and Branch-Cuts 65
7.1 Riemann (1857) Surface of a Multivalued Function 65
7.2 Denumerable Infinity of Connected Sheets 67
7.3 Principal Branch in the Cut-Plane ... 69
7.4 Jump Discontinuity across a Branch-Cut 70
7.5 Semiinfinite Cut Joining a Branch-Point to Infinity 70
7.6 Infinite Derivative of a Function at a Branch-Point 71
7.7 Theorem and Method for the Identification of Branch-Points 72
7.8 Elementary Functions with Two Branch-Points 73
7.9 Functions with Several Branch-Points and Branch-Cuts 77

8 Motion of a Pendulum and a Ship .. 81
8.1 Stability of a Suspended or Inverted Pendulum 81
8.2 Motion of the Pendulum and Force along the Rod 83
8.3 Metacentric Distance and Rolling Torque 84
8.4 Length of the Pendulum Equivalent to the Ship 84
8.5 Kinetic, Potential, and Total Energy ... 85
8.6 Linearization in the Vicinity of the Equilibrium Position 86
Contents

8.7 Branch-Points as Boundaries of the Angular Motion 87
8.8 Oscillation about a Position of Stable Equilibrium (Galileo, 1583) 88
8.9 Divergence Away from the Position of Unstable Equilibrium 89

9 Stereographic Projection and Genus of a Surface 91
9.1 Injective, Surjective, and Bijective Mappings 91
9.2 Unit Sphere and the Complex Plane 93
9.3 Direct and Inverse Stereographic Transformation 94
9.4 Mapping of a Circle onto a Straight Line 95
9.5 Projection of a Circle into Another Circle 95
9.6 Isomorphism of Circle and Real Line 96
9.7 Continuous Deformation and Topological Sphere 97
9.8 Sphere with One Handle and Toroidal Topology 98
9.9 Torus with Holes or Sphere with Handles 99

10 Examples 10.1 to 10.20 103

Part 2 Integrals and Residues: Flows and Gravity 121

11 Differentiation and Holomorphic Functions 123
11.1 Function, Neighborhood, Limit, and Uniformity 123
11.2 Continuity, Incremental Ratio, and Derivate (Newton, 1670; Leibnitz, 1684) 124
11.3 Holomorphic Function and Continuous Derivatives 125
11.4 Cauchy (1821)–Riemann (1851) Conditions in Cartesian and Polar Coordinates 128
11.5 Formulas for the Derivative and Its Modulus and Argument 128
11.6 Cartesian and Polar Laplace (1825) Equation 129
11.7 Gradient, Divergence, Curl, and Laplacian 130
11.8 Families of Plane Orthogonal Curves 131
11.9 Orthogonal Plane Curvilinear Coordinates 132

12 Potential Flow and Multipoles 135
12.1 Circulation, Potential, Curl, and Vorticity 135
12.2 Flow Rate, Stream Function, Divergence, and Dilatation (Lagrange, 1781; Rankine, 1864) 137
12.3 Complex Potential and Conjugate Velocity 138
12.4 Irrotational Flow due to a Source or Sink 139
12.5 Incompressible Flow due to a Vortex 141
12.6 Superposition as a Monopole and Spiral Flow 142
12.7 Dipole as the Limit of Two Opposing Monopoles 142
12.8 Quadrupole Moment and Rule of Differentiation 145
12.9 Arbitrary Multipole and Directivity Lobes 147

13 Primitive and Contour Integrals 151
13.1 Existence and Properties of the Primitive of a Function 151
13.2 Riemann Integral of a Complex Function (Cauchy, 1825; Riemann, 1851) 152
13.3 Rectifiable Curves and Bounded Functions 154
13.4 Parametric Limits and Uniform Continuity 155
13.5 Complex Loop and Contour Integrals 156
13.6 Reciprocal Theorems of Cauchy (1825) and Morera (1886–Osgood (1896) ... 157
13.7 Integration by Parts and Chain Rule (Leibnitz, 1864) ... 158
13.8 Derivation of an Integral with Regard to a Parameter ... 159
13.9 Parametric Integral with Variable End-Points ... 160

14 Pressure and Corner Flows ... 163
14.1 Mass Conservation and Equation of Continuity ... 163
14.2 Inviscid Momentum Equation (Euler, 1752, 1759) ... 165
14.3 Adiabatic Condition and Equation of State ... 166
14.4 Homentropic Flow and Conservation of Circulation (Helmholtz, 1858; Kelvin, 1869) 167
14.5 Hydrostatic, Dynamic, and Stagnation Pressures (Torricelli, 1643; Bernoulli, 1738) 168
14.6 Compressibility Effects and the Pitot Tube (1732) ... 169
14.7 Venturi Tube (Herschel, 1887) and Variable-Area Duct ... 173
14.8 Corner Flows and Multipoles at Infinity ... 177
14.9 Stream past a Wedge and Sharp Edge ... 181

15 Loop Integrals and Poles ... 187
15.1 Cauchy (1821) First Theorem on Integrals ... 187
15.2 Doubly-Connected Region and “Shrinking” of a Loop ... 188
15.3 Second Cauchy (1821) Theorem: Value of the Function ... 189
15.4 Third Cauchy (1821) Theorem: All the Derivates ... 190
15.5 Inclusion or Exclusion of Singularities on the Boundary ... 191
15.6 Holomorphic Function in a Multiply-Connected Region ... 193
15.7 Residue of a Function at a Simple Pole ... 194
15.8 Multiple Pole or Pole of Order n ... 196
15.9 Loop Integral with Poles in the Interior and on the Boundary ... 198

16 Images on Plane Walls ... 201
16.1 Identical Image on a Rigid Wall (Rankine, 1864) ... 201
16.2 Image Vortex with Opposite Circulation ... 206
16.3 Effect of Wall on Monopole or Spiral Source ... 209
16.4 Far-Field of Multipole near a Hard Wall ... 210
16.5 Monopole in a Hard-Walled Rectangular Corner ... 211
16.6 Trajectories of a Vortex or Source/Sink in a Corner ... 212
16.7 Flow and Forces for a Monopole in a Rectangular Corner (Gröbli, 1877; Greenhill, 1878) 215
16.8 Multiple Identical Source/Sink Images ... 220
16.9 Alternating Vortices in a Rigid Corner ... 221

17 Improper Integrals and Principal Value ... 225
17.1 Improper Uni(bi)lateral Integrals of the Three Kinds ... 225
17.2 Transformation of a Straight Segment into a Circle ... 226
17.3 Closing a Straight Line by a Half-Circle ... 228
17.4 Connecting the Real Axis in the Upper/Lower Half-plane ... 229
17.5 Integrals with an Oscillating Factor (Jordan, 1894) ... 231
17.6 The Localization Lemma for Holomorphic Functions ... 234
17.7 Surrounding a Semiinfinite Branch-Cut ... 235
17.8 Branch-Point within the Path of Integration .. 238
17.9 Cauchy (1821) Principal Value of an Integral 239

18 Mass and the Gravity Field .. 243
18.1 Irrotational Flow due to Sources or Sinks ... 243
18.2 Incompressible Flow due to a Vorticity Distribution 245
18.3 Gravity Field and Gravitational Constant .. 246
18.4 Line, Surface, and Volume Mass Distributions 247
18.5 Gravity Force of Attraction (Newton, 1687) 248
18.6 Gravity Field of a Homogeneous Slab ... 249
18.7 Gravity Field inside and outside the Mass ... 251
18.8 Field due to a Distribution of Infinite Extent 253
18.9 Multipolar Representation of the Gravity Field 256

19 Cauchy Conditions and Infinitesimals ... 261
19.1 Calculation of Riemann Integrals Using the Definition 261
19.2 Mean Value Theorem and Bounds .. 262
19.3 Division into Internal and Boundary Regions 262
19.4 Function Holomorphic in the Interior and on the Boundary 264
19.5 Uniform Continuity on the Boundary (Goursat, 1900) 265
19.6 Isolated Ignorable Singularities on the Boundary (Littlewood, 1944) 265
19.7 Infinitesimals of the Same or Higher Order 266
19.8 Zero of Order n and L'Hôpital's (1696; Bernoulli, 1691) Rule 267
19.9 Calculation of the Residues of Ratios of Functions 269

20 Examples 20.1 to 20.20 ... 273

Part 3 Power Series: Electricity and Magnetism 295

21 Convergence of and Operations on Series .. 297
21.1 Convergent, Divergent, and Oscillating Series 297
21.2 Association of Terms and Sum of a Series ... 300
21.3 Absolute and Conditional Convergence (Dirichlet, 1837) 301
21.4 Permutation of Terms and Product of Series (Cauchy, 1821) 303
21.5 Uniform Convergence and Series of Functions 304
21.6 Limit, Differentiation, and Integration Term-by-Term 308
21.7 Total Convergence and Weierstrass M-Test (1876) 310
21.8 Geometric, Logarithmic, and Inverse-Power Series 311
21.9 Convergence inside, outside, and on the Unit Circle 313

22 Multiple Reflections in a Lens .. 317
22.1 Period, Frequency, Wavelength, and Wavevector 317
22.2 Reflection, Transmission, and Inaccessible Regions (Snell, 1626; Descartes, 1637; Fresnel, 1823) ... 319
22.3 Wave Scattering and Fastest Path (Fermat, 1657) 321
22.4 Reflection and Transmission of Acoustic Waves 323
22.5 Adsorption at an Interface and Internal Absorption 326
22.6 Multiple Reflections between Parallel Interfaces 328
22.7 Total Reflection, Transmission, and Damping Coefficients 329
22.8 Multiple Media, Transparency, and Opaqueness 330
22.9 Constructive and Destructive Interference (Bragg, 1912) 331
23 Analytic Series of Ascending Powers
 23.1 Harmonic Function and Mean Value on a Circle 335
 23.2 Lemmas of Constancy and Maximum Modulus 336
 23.3 Monotonic Chain of Regions and Loops 337
 23.4 Geometric Series of Holomorphic Functions 338
 23.5 Regions of Absolute and Uniform Convergence 339
 23.6 Lagrange (1770)–Burmann (1799) Series and Implicit Derivation 340
 23.7 Taylor (1715) and Stirling (1717)–Maclaurin (1742) Theorems 341
 23.8 Implicit Derivatives and Mean-Value Theorem 342
 23.9 Darboux Expansion (1876) and Lagrange/Cauchy Remainders 343

24 Electrostatics, Charges, and Dielectrics
 24.1 Electric Field, Displacement, and Polarization (Maxwell, 1873) 353
 24.2 Dielectric Permittivity and Electric Susceptibility 354
 24.3 Potential due to Charges and Electric Force (Coulomb, 1785) 355
 24.4 Multipole near Insulating or Conducting Wall 356
 24.5 Identical or Alternating Images in a Corner 359
 24.6 Cylinder in a Uniform Electric Field 361
 24.7 Reciprocal Point and First Circle Theorem (Kirchhoff, 1845) 363
 24.8 Induced Electric Charges on a Cylinder 365
 24.9 Charge near Interface between Two Dielectrics 368

25 Singular Series of Ascending–Descending Powers
 25.1 Lemma of the Extrema and Doubly-Connected Chain 375
 25.2 Ascending and Descending Geometric Series 378
 25.3 Total Convergence in a Closed Subregion 379
 25.4 Absolute Convergence in an Open Region 380
 25.5 Series of Teixeira (1900): Coefficients and Remainder 380
 25.6 Restriction to Laurent (1843)–Weierstrass (1841) and Laurent–Maclaurin Series 381
 25.7 Hierarchy of Power Series Expansions 382
 25.8 Coefficients of Reversion of Series to Third-Order 383
 25.9 Binomial Expansion and Series and Inverse Powers 384

26 Magnetostatics, Currents, and Permeability
 26.1 Magnetic Field, Induction, and Polarization (Maxwell, 1873) 389
 26.2 Magnetic Permeability, Susceptibility, and Field Function 390
 26.3 Electric Current and Magnetic Force (Biot–Savart) 391
 26.4 Hydrodynamic, Electromagnetic, and Gravity Multipoles 392
 26.5 Current near Conducting or Insulating Plane 394
 26.6 Image Electric Currents in a Corner 396
 26.7 Cylinder in a Magnetic Field or near a Line-Current 397
 26.8 Current near Cylindrical Magnetic Interface 400
 26.9 Infinite Magnetic Dipole Distribution 407
Contents

27 Classification of Singularities and Functions

- **27.1 Chain of Inclusion of Real Functions** ... 413
- **27.2 Set of Coincidences for Complex Functions** 416
- **27.3 Ordinary Points, Zeros, and Singularities** 418
- **27.4 Residues at Poles and Essential Singularities** 420
- **27.5 Inversion of the Origin and Singularity at Infinity** 421
- **27.6 Identification of Constants (Cauchy, 1844; Liouville, 1847)** 423
- **27.7 Definition of Polynomial and Rational Function** 424
- **27.8 Essential Singularity as an Accumulation of Poles** 426
- **27.9 Integral, Meromorphic, and Polymorphic Functions** 428

28 Forces and Moments on Bodies

- **28.1 Kinetic, Electric, Magnetic, and Gravity Energies** 439
- **28.2 Drag/Thrust, Lift/Downforce, and Pitching Moment** 442
 (Kutta, 1902a; Joukowski, 1906; Blasius, 1910)
- **28.3 Hydrodynamic, Electromagnetic, and Gravity Forces** 453
- **28.4 Fairing due to a Source or Sink in a Stream (Rankine, 1871)** 460
- **28.5 Oval/Valley/Throat due to a Source and Sink Pair** 462
- **28.6 Virtual Mass of a Cylinder and Cavitation** 466
- **28.7 Flow past a Cylinder with Circulation** 472
- **28.8 Moving Vortex and Source/Sink Image System** 479
- **28.9 Dipole outside or inside a Cylinder** ... 485

29 Combined Test of Convergence

- **29.1 Behavior of Series at All Points of the Complex Plane** 493
- **29.2 Cauchy (1821) Necessary and Sufficient Conditions** 498
- **29.3 Region of Convergence and D'Alembert's Ratio (1768)** 501
- **29.4 Convergence of Integrals and Harmonic Series** 502
- **29.5 Gauss Test (1812a) and Euler (1735)–Mascheroni (1790)** 504
- **29.6 Criteria and Sums of Abel (1826, 1839)–Dirichlet (1862)** 506
- **29.7 Boundary of Convergence and Weierstrass K-Test (1856)** 508
- **29.8 Radius and Exponent of a Power Series** 510
- **29.9 Gaussian or Three-Parameter Hypergeometric Series** 511

30 Examples 30.1 to 30.20

Part 4 Conformal Mapping: Heat and Aerodynamics

31 Analytic Continuation and Rational Functions

- **31.1 Theorem of Monodromy and Lacunary Functions** 543
 (Osgood, 1929)
- **31.2 Conjugate Property and Reflection Principle (Riemann, 1863; Schwartz, 1890)** 547
- **31.3 Analytic Extension with Jump across an Arc (Plemelj, 1908)** 550
- **31.4 The Cauchy (1821) Fourth Integral Theorem** 553
- **31.5 Number of Zeros and Poles of a Function** 554
- **31.6 Theorem of Rouche (1858) and Fundamental Theorem of Algebra** 555
Contents

31.7 Legendre's Theorem and Roots of Polynomials ... 558
31.8 Rational Functions and Simple Fractions .. 560
31.9 Decomposition into Partial Fractions and Rational Integrals 563

32 Steady Heat Conduction .. 567
32.1 Heat Flux and Thermal Conductivity (Fourier, 1818) 567
32.2 Regularity, Asymptotic, and Boundary Conditions .. 570
32.3 Irrotational and Solenoidal Potential Fields ... 571
32.4 Corner with Isothermal or Adiabatic Walls ... 572
32.5 Solid Cylinder and Cylindrical Cavity ... 574
32.6 Hollow Tube with Thick or Thin Walls ... 578
32.7 Convective Transfer in Heat Exchangers ... 582
32.8 Concentric Cylinders of Different Materials ... 586
32.9 Parallel Walls of an Inhomogeneous Substance .. 589

33 Conformal and Critical Points ... 595
33.1 Preservation of Modulus and Direction of Angles ... 595
33.2 Inversion of Angles and Isogonal Mapping .. 596
33.3 Transformation of Angles, Lengths, and Areas ... 597
33.4 Critical Points of the First and Second Kinds ... 600
33.5 Multiplication and Division of Angles into Edges ... 602
33.6 Interior Polygonal Transformation (Christoffel, 1868; Schwartz, 1868) 604
33.7 Interior and Exterior Mappings and Point-at-Infinity 607
33.8 Mapping of a Disk into the Interior of a Polygon .. 609
33.9 Finite Interior and Overlapping Exterior .. 610

34 Wing Sections and Planforms .. 615
34.1 Flow past a Flat Plate and Kutta (1902b) Condition .. 616
34.2 Joukowski (1910) Transformation and the Elliptic Cylinder 623
34.3 Circular Arc and Symmetric Airfoils .. 628
34.4 Cambered or Unsymmetric Joukowski (1916) Airfoil 632
34.5 Parametric Families and Generic Airfoils (von Karman–Trefftz, 1918; von Mises, 1920; Carafoli) ... 637
34.6 Lift and Pitching Moment Axis and Coefficients .. 643
34.7 Spanwise Distribution of Circulation along a Lifting-Line (Prandtl, 1918) 651
34.8 Uniform Downwash and Elliptic Loading .. 660
34.9 Induced, Form, and Total Drag ... 663

5 Linear and Homographic Transformations .. 669
35.1 Rotation, Translation, and Isometric Mappings ... 669
35.2 Group of Linear Mappings and Homothety .. 671
35.3 Attractive, Repulsive, and Indifferent Limit Points .. 672
35.4 Univalent Mapping and Homographic Transformation 673
35.5 Bilinear Group (Mobius) and Self-Inverse Function 675
35.6 Four-Point Cross-Ratio and Fixed Points ... 677
35.7 Reciprocal Points with Regard to the Circle and the Straight Line 678
35.8 Mapping of a Half-Plane into a Unit Disk ... 683
35.9 Mapping between Interiors and Exteriors of Circles 684
36 Channels, Condensers, and Wakes

- **36.1 Rounded Wedge and Cylindrical Indentation** .. 690
- **36.2 Identical/Alternating Images for Irrotational/Solenoidal Fields** 697
- **36.3 Path of a Monopole past a Sharp Edge** .. 704
- **36.4 Circulation around a Flat Plate and Flow through a Slit** 713
- **36.5 Convergent Channel (Harris, 1901) and Added Length** 720
- **36.6 Monopole Images on Parallel Walls** ... 727
- **36.7 Confined Vortex and Single Vortex Row** .. 731
- **36.8 Source/Sink in a Well, on a Wall or at a Corner** 737
- **36.9 Parallel and Staggered Double Vortex Street** (von Karman, 1911; Lamb, 1932) 743

37 Mapping of Domains and Boundaries

- **37.1 Unicity of Mappings and Bounds in the Unit Disk** 756
 (Schwartz, 1890; Caratheodory, 1912; Borel, 1928)
- **37.2 Existence of a Uniformly Convergent Subsequence** 759
 (Vitali, 1903; Montel, 1910; Osgood, 1929)
- **37.3 Simply Connected Region with at Least Two Boundary Points** 762
 (Riemann, 1863)
- **37.4 Mapping between Multiply Connected Regions** 765
 by Multivalent/Multivalued Functions
- **37.5 Minimax, Reference, and Punctured Mappings** 770
- **37.6 Automorphism Group and Fundamental Regions** 772
- **37.7 Correspondence of Interiors and Boundaries for Compact and Noncompact Regions** 775
- **37.8 Interior and Exterior Integral Theorems** (Cauchy, 1821; Schwartz, 1890) 780
- **37.9 Harmonic Functions Defined by Boundary Values** 783
 (Poisson, 1820; Dirichlet, 1850; Robin, 1886; von Neumann, 1961)

38 Hodograph for Free Jets

- **38.1 Fields due to Potentials on Planes and Cylinders** 797
- **38.2 Width of the Vena Contracta of a Jet** (Borda, 1766) 805
- **38.3 Slit in a Wall and Reentrant Tube in a Reservoir** (Helmholtz, 1888) 807
- **38.4 Flat Plate Orthogonal to a Jet or to a Wall** (Kirchhoff, 1869; Rayleigh, 1876a) 812
- **38.5 Center of Pressure and Dividing Streamline on a Surfboard** (Rayleigh, 1876b, 1891) 817
- **38.6 Arrow or Bent Lamina in a Stream** (Rethy, 1879; Bobyleff, 1881) 824
- **38.7 Jet Attachment around a Wall** (Coanda Effect) 830
- **38.8 Fluidics: Deflection of a Jet by a Small Source** 834
- **38.9 Jets Merging, Splitting, or Colliding with a Wall** 839

39 Essential Singularities, Roots, and Periods

- **39.1 Classification of Special and Singular Points** 853
- **39.2 Zeros, Poles, and Essential Singularities** (Casorati, 1868; Weierstrass, 1876; Picard, 1880) 856
- **39.3 Exceptional Value** (Picard, 1879) and Infinite Number of Roots 860