Textile advances in the automotive industry

Edited by
R. Shishoo

The Textile Institute

CRC Press
Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED
Cambridge, England
Contents

Contributor contact details \(xi \)

Woodhead Publishing in Textiles \(xv \)

Introduction \(xxi \)
R Shishoo, Shishoo Consulting AB, Sweden

Part I: General

1 Requirements for automotive textiles – a car producer’s view \(3 \)
 E Söderbaum, Volvo Car Corporation, Sweden

1.1 Introduction \(3 \)
1.2 Automotive textiles \(3 \)
1.3 Volvo Car Corporation development process \(5 \)
1.4 Technical demands \(5 \)
1.5 Technical regulation \(8 \)
1.6 Design demands \(12 \)
1.7 Purchase demands \(12 \)
1.8 Purchase engineering demands \(15 \)

2 Mapping the automotive textile supply chain \(17 \)
 N B Powell, R. Handfield and R. Barnhardt, North Carolina State University, USA

2.1 Introduction \(17 \)
2.2 The importance of information in supply chains \(18 \)
2.3 Supply chain organizational dynamics \(19 \)
2.4 Creating information visibility in supply chains \(20 \)
2.5 Market analysis \(23 \)
2.6 Results of supply chain mapping: current practices and linkages \(29 \)
Contents

2.7 Tactical recommendations for supply chain mapping 35
2.8 Conclusions 38
2.9 Sources of further information and advice 39
2.10 References 41

3 Woven and knitted fabrics used in automotive interiors
T Stegmaier, J Mavely, M Schweins, V von Arnim, G Schmeer-Lioe, P Schneider, H Finckh and H Planck, ITV – Institute of Textile Research and Process Engineering, Germany

3.1 Introduction 43
3.2 Various types of textile components in car interiors 44
3.3 Overview of main types of textiles used 46
3.4 Woven and knitted fabrics 47
3.5 Finishing of textiles 49
3.6 Processing multilayer systems 50
3.7 Test procedures and special properties 51
3.8 Future trends 58
3.9 References 61

4 Nonwovens used in automobiles
S J Russell and M J Tipper, University of Leeds, UK

4.1 Introduction 63
4.2 Headliners 67
4.3 Bonnet liners 70
4.4 Boot (trunk) liners 71
4.5 Door and parcel shelf 72
4.6 Seat 72
4.7 Floorcovering 73
4.8 Acoustic insulation 75
4.9 Automotive nonwoven filters 80
4.10 Other components 82
4.11 Future trends 83
4.12 Acknowledgements 84
4.13 References 84

5 Recycling of automotive textiles
X Normand, Institut Français du Textile et de l’Habillage, France

5.1 Introduction 86
5.2 Legislative considerations with regard to the disposability of used vehicles 87
5.3 Shortcomings in the textile materials used today 88
Contents vii

5.4 Conception of recyclable engine air filters for the automotive industry 91
5.5 Development of recyclable textile acoustic insulation structures for the automotive market 98
5.6 Future trends 108
5.7 References 109

Part II: Automotive interiors

6 Design of automotive interior textiles 113
N B Powell, North Carolina State University, USA

6.1 Introduction 113
6.2 Current automotive environment 114
6.3 Automotive textiles market 117
6.4 Establishing the target consumer 121
6.5 Trim selection process 122
6.6 Impact of seat design requirements 123
6.7 New product development process for automotive trim 124
6.8 Sample development 125
6.9 Communicating value and design services 134
6.10 Future trends: innovative materials 135
6.11 Sources of further information and advice 137
6.12 References 138

7 Three-dimensional textiles and nonwovens for polyurethane foam substitution in car seats 140
H Erth and B Gulich, STFI, Germany

7.1 Introduction 140
7.2 Properties and performance requirements for car seats 141
7.3 Types of materials used as cushions 142
7.4 Key technologies for replacing polyurethane foams in car seats 144
7.5 Environmental advantages of using substitutes 145
7.6 Future trends 146
7.7 References 149

8 Physiologically optimised car seats 150
V T Bartels, Hohenstein Institutes, Germany

8.1 Introduction 150
8.2 Thermophysiological comfort of car seats 151
8.3 Measurement of seat comfort 156
8.4 Improving comfort properties of car seats 163
Contents

8.5 Conclusions 169
8.6 Future trends 170
8.7 Acknowledgements 170
8.8 References 170

9 Smart textiles in automotive interiors 172
F Boussu, C Cochrane, M Lewandowski and V Koncar,
ENSATI – l'Ecole Nationale Supérieure des Arts et Industries Textiles, France

9.1 Introduction 172
9.2 Technical elements enabling the production of smart textiles 178
9.3 Textile sensors 180
9.4 Textile actuators 188
9.5 Conclusions 196
9.6 References 196

10 Reducing noise in automotive interiors 198
J Y Chen, Louisiana State University Agricultural Center, USA

10.1 Causes of noise generation in moving vehicles 198
10.2 Theory of noise-minimizing properties of textiles 201
10.3 Textile materials for noise absorption 201
10.4 Textile materials for noise insulation 207
10.5 Testing methods for acoustical properties of textile materials 210
10.6 Engineering of acoustic textiles for noise control in vehicles 218
10.7 Future trends 225
10.8 References 227

11 Leather and coated textiles in automotive interiors 229
M Meyer, H Schulz and M Stoll, Research Institute of Leather and Plastic Sheeting (FILK), Germany

11.1 Introduction 229
11.2 Technologies for producing leather for automobiles 230
11.3 Technologies for the production of coated textiles and artificial leather for the automotive industry 237
11.4 A special case: leather board 245
11.5 Testing of leather and coated textiles for automotives: physical and chemical requirements 245
11.6 Sources of further information and advice 247
11.7 References 249
Part III: Safety applications of automotive textiles

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Technical developments and market trends of automotive airbags</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>S K Mukhopadhyay, Sans Fibres (Pty) Ltd, South Africa</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Historical background</td>
<td>255</td>
</tr>
<tr>
<td>12.2</td>
<td>Materials and processes</td>
<td>257</td>
</tr>
<tr>
<td>12.3</td>
<td>Airbag deployment and performance criteria</td>
<td>261</td>
</tr>
<tr>
<td>12.4</td>
<td>Market trends and developments</td>
<td>264</td>
</tr>
<tr>
<td>12.5</td>
<td>Future expectations and possible challenges</td>
<td>267</td>
</tr>
<tr>
<td>12.6</td>
<td>Bibliography</td>
<td>268</td>
</tr>
<tr>
<td>13</td>
<td>Key technology developments in textiles for use in automotive tires</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>W K Westgate and J Gillick, The Goodyear Tire & Rubber Company, USA</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>270</td>
</tr>
<tr>
<td>13.2</td>
<td>Properties and performance requirements of tires</td>
<td>271</td>
</tr>
<tr>
<td>13.3</td>
<td>Recent developments in fiber/textile reinforcements used in tire manufacturing</td>
<td>280</td>
</tr>
<tr>
<td>13.4</td>
<td>Fiber-rubber adhesion in tires</td>
<td>285</td>
</tr>
<tr>
<td>13.5</td>
<td>Recent advances in tire designs</td>
<td>289</td>
</tr>
<tr>
<td>13.6</td>
<td>Future trends</td>
<td>292</td>
</tr>
<tr>
<td>13.7</td>
<td>Sources of further information and advice</td>
<td>294</td>
</tr>
<tr>
<td>13.8</td>
<td>References</td>
<td>296</td>
</tr>
</tbody>
</table>

Part IV: Use of textiles in automotive bodywork

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Textile structures for load-bearing applications in automobiles</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>T Gries, J Stueve, T Grundmann and D Veit, RWTH Aachen University, Germany</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>14.2</td>
<td>Latest advances in technologies for producing 2D and 3D textile load-bearing structures for automotive applications</td>
<td>302</td>
</tr>
<tr>
<td>14.3</td>
<td>Processing textiles using preforming and prepreg technology</td>
<td>313</td>
</tr>
<tr>
<td>14.4</td>
<td>Applications of textile structures in automobiles</td>
<td>317</td>
</tr>
<tr>
<td>14.5</td>
<td>Future trends</td>
<td>317</td>
</tr>
<tr>
<td>14.6</td>
<td>References</td>
<td>318</td>
</tr>
</tbody>
</table>
Contents

15 Textile composites for automotive structural components 320
F K Ko, University of British Columbia, Canada

15.1 Introduction 320
15.2 Textile structures for automotive composites 322
15.3 The role of fiber architecture in composite performance 325
15.4 The Sunrise™ electrical vehicle program 328
15.5 Examples of composite structural components 334
15.6 Summary and future trends 338
15.7 Acknowledgements 342
15.8 References 342

Index 344