RUBBER NANOCOMPOSITES
PREPARATION, PROPERTIES, AND APPLICATIONS

Editors

Sabu Thomas
Mahatma Gandhi University, India

Ranimol Stephen
Cochin University of Science and Technology, India

John Wiley & Sons (Asia) Pte Ltd

TECHNISCHE INFORMATIONSBIBLIOTHEK
UNIVERSITÄTSBIBLIOTHEK
HANNOVER
1 Nanocomposites: State of the Art, New Challenges and Opportunities
 Ranimol Stephen and Sabu Thomas
 1.1 Introduction 1
 1.2 Various Nanofillers 2
 1.2.1 Layered Silicates 2
 1.2.2 Nanotubes 3
 1.2.3 Spherical Particles 5
 1.2.4 Polyhedral Oligomeric Silsesquioxanes 6
 1.2.5 Bionanofillers 7
 1.3 Rubber Nanocomposites 8
 1.4 Future Outlook, Challenges and Opportunities 11
 References 12

2 Manufacturing Techniques of Rubber Nanocomposites
 Jun Ma, Li-Qun Zhang and Li Geng
 2.1 Introduction 21
 2.1.1 Conventional Manufacturing Techniques 22
 2.1.2 Rubber Nanocomposites 22
 2.1.3 Reinforcing Agent 23
 2.2 Melt Compounding 25
 2.2.1 Manufacturing Factors Control 25
 2.2.2 Filler Surface Modification 34
 2.3 Solution Blending 39
 2.3.1 Manufacturing Factors Control 39
 2.3.2 Preparing Exfoliated/Intercalated Nanocomposites 46
 2.4 Latex Compounding 47
 2.4.1 Manufacturing Factors Control 48
 2.4.2 The Effect of Rubber Type 57
2.5 Summary
Acknowledgments
References

3 Reinforcement of Silicone Rubbers by Sol-Gel In Situ Generated Filler Particles
Liliane Bokobza and Amadou Lamine Diop

3.1 Introduction
3.2 Synthetic Aspects
 3.2.1 General Considerations
 3.2.2 Adopted Protocols
3.3 Properties of the Hybrid Materials
 3.3.1 State of Dispersion
 3.3.2 Stress-Strain Curves
 3.3.3 Low Strain Dynamic Properties
 3.3.4 Mullins Effect
 3.3.5 Characterization of the Polymer-Filler Interface
 3.3.6 Thermal Properties
3.4 Conclusions
References

4 Interface Modification and Characterization
Jun Ma, Li-Qun Zhang and Jiabin Dai

4.1 Introduction
 4.1.1 Particle Size
 4.1.2 Surface Activity
4.2 Rubber Nanocomposites Without Interface Modification
 4.2.1 Hardness and 300% Tensile Modulus
 4.2.2 Tensile Strength
 4.2.3 Tensile Strain
 4.2.4 Tear Strength
 4.2.5 Rebound Resilience
 4.2.6 Processing Properties
 4.2.7 Advantages
 4.2.8 Disadvantages
4.3 Interface Modification by Nonreactive Routes
4.4 Interface Modification by Reactive Routes
4.5 Characterization of Interface Modification
 4.5.1 Direct Methods for Interface Characterization
 4.5.2 Indirect Methods for Interface Characterization
4.6 Conclusion
List of Abbreviations
Acknowledgments
References
5 Natural Rubber Green Nanocomposites

Alain Dufresne

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Preparation of Polysaccharide Nanocrystals</td>
<td>114</td>
</tr>
<tr>
<td>5.3 Processing of Polysaccharide Nanocrystal-Reinforced Rubber Nanocomposites</td>
<td>115</td>
</tr>
<tr>
<td>5.4 Morphological Investigation</td>
<td>116</td>
</tr>
<tr>
<td>5.5 Swelling Behavior</td>
<td>118</td>
</tr>
<tr>
<td>5.5.1 Toluene Swelling Behavior</td>
<td>119</td>
</tr>
<tr>
<td>5.5.2 Water Swelling Behavior</td>
<td>127</td>
</tr>
<tr>
<td>5.5.3 Influence of the Chemical Modification of the Filler</td>
<td>128</td>
</tr>
<tr>
<td>5.6 Dynamic Mechanical Analysis</td>
<td>131</td>
</tr>
<tr>
<td>5.7 Tensile Tests</td>
<td>134</td>
</tr>
<tr>
<td>5.8 Successive Tensile Tests</td>
<td>137</td>
</tr>
<tr>
<td>5.9 Barrier Properties</td>
<td>143</td>
</tr>
<tr>
<td>5.10 Conclusions</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td>144</td>
</tr>
</tbody>
</table>

6 Carbon Nanotube Reinforced Rubber Composites

R. Verdejo, M.A. Lopez-Manchado, L. Valentini and J.M. Kenny

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>6.2 Functionalized Carbon Nanotubes</td>
<td>148</td>
</tr>
<tr>
<td>6.3 Elastomeric Nanocomposites</td>
<td>152</td>
</tr>
<tr>
<td>6.3.1 Natural Rubber</td>
<td>152</td>
</tr>
<tr>
<td>6.3.2 Styrene-Butadiene Rubber</td>
<td>155</td>
</tr>
<tr>
<td>6.3.3 Polyurethane Rubber</td>
<td>157</td>
</tr>
<tr>
<td>6.3.4 Silicone Rubber</td>
<td>160</td>
</tr>
<tr>
<td>6.4 Outlook</td>
<td>161</td>
</tr>
<tr>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>

7 Rubber/Clay Nanocomposites: Preparation, Properties and Applications

K.G. Gatos and J. Karger-Kocsis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>7.2 Clays and Their Organophilic Modification</td>
<td>170</td>
</tr>
<tr>
<td>7.3 Preparation of Rubber/Clay Nanocomposites</td>
<td>171</td>
</tr>
<tr>
<td>7.3.1 Solution Intercalation</td>
<td>173</td>
</tr>
<tr>
<td>7.3.2 Latex Route</td>
<td>173</td>
</tr>
<tr>
<td>7.3.3 Melt Compounding</td>
<td>174</td>
</tr>
<tr>
<td>7.4 Properties of Rubber/Clay Nanocomposites</td>
<td>176</td>
</tr>
<tr>
<td>7.4.1 Crosslinking</td>
<td>176</td>
</tr>
<tr>
<td>7.4.2 Mechanical Performance</td>
<td>179</td>
</tr>
<tr>
<td>7.4.3 Barrier Properties</td>
<td>184</td>
</tr>
<tr>
<td>7.4.4 Fire Resistance</td>
<td>186</td>
</tr>
<tr>
<td>7.4.5 Others</td>
<td>187</td>
</tr>
</tbody>
</table>
8 Cellulosic Fibril–Rubber Nanocomposites
Maya Jacob John and Sabu Thomas

8.1 Introduction
8.2 Cellulose
8.3 Cellulosic Nanoreinforcements
 8.3.1 Cellulosic Microfibrils
8.4 Studies on Cellulosic/Latex Nanocomposites
8.5 Conclusions
References

9 Nanofillers In Rubber–Rubber Blends
Rosamma Alex

9.1 Introduction
9.2 Types of Nanofillers
 9.2.1 Spherical Fillers
 9.2.2 Tubular Fillers
 9.2.3 Layered Clays
9.3 Role of Nanofillers in Reinforcement
 9.3.1 Particle Size
 9.3.2 Rubber–Filler Interaction
 9.3.3 Filler–Filler Interactions
 9.3.4 Shape and Structure of Filler
 9.3.5 Filler Reinforcement with Reference to Concentration and Cure
9.4 Methods to Enhance Polymer–Filler Interaction and Reinforcement
 9.4.1 Micromechanical Interlocking
 9.4.2 Physical and Chemical Interactions – Modification of Nanofillers
9.5 Role of Nanofiller as Compatibilizer
9.6 Structure Compatibility Concept of NR-Based Latex Blends
 9.6.1 Forms of NR Suitable for Blend Nanocomposites
 9.6.2 Important Synthetic Latices used in Blend Nanocomposites
9.7 Solubility Parameter and Mixing of Latices
 9.7.1 Particle Size and Molecular Weight
 9.7.2 Nonrubber Solids and Total Solids Content
9.8 Preparation of Nanocomposites
 9.8.1 Solution Blending
 9.8.2 Latex Stage Compounding
 9.8.3 Melt Intercalation
9.9 Rubber Blend Nanocomposites Based on Skim NR Latex and Fresh NR Latex: Preparation, Characterization and Mechanical Properties
9.10 Advantages of Nanocomposites and Application of Rubber Nanocomposites
References

10 Thermoplastic Polyurethane Nanocomposites
S.K. Smart, G.A. Edwards and D.J. Martin

10.1 Introduction
10.2 Market
 10.2.1 Styrene Block Copolymers
 10.2.2 Thermoplastic Olefins
 10.2.3 Thermoplastic Vulcanizates
 10.2.4 Copolyester Elastomers
 10.2.5 Thermoplastic Polyurethanes
10.3 TPU Chemistry, Morphology and Properties
10.4 TPU Nanocomposites
10.5 Layered Silicate/TPU Nanocomposites
10.6 Carbon Nanotube/TPU Nanocomposites
10.7 Future Perspectives
References

11 Microscope Evaluation of the Morphology of Rubber Nanocomposites
Hiroaki Miyagawa

11.1 Introduction
11.2 Optical Microscopy
11.3 Scanning Electron Microscopy
 11.3.1 Micrographs with Secondary Electron
 11.3.2 Energy Dispersive X-Ray Spectroscopy (EDX)
 11.3.3 Electron Probe Microanalysis
 11.3.4 X-Ray Ultramicroscopy
11.4 Transmission Electron Microscopy
 11.4.1 Sample Preparation for TEM Observations
 11.4.2 Bright-Field TEM Micrographs
 11.4.3 Scanning Transmission Electron Microscopy and EDX
 11.4.4 Electron Spectroscopy Imaging in Transmission Electron Microscopy
 11.4.5 3-D Transmission Electron Microtomography
11.5 Scanning Probe Microscopy
 11.5.1 Atomic Force Microscopy
 11.5.2 Other AFM-Related Techniques
11.6 Summary
References

12 Mechanical Properties of Rubber Nanocomposites: How, Why . . . and Then?
L. Chazeau, C. Gauthier and J.M. Chenal

12.1 Introduction
12.2 Typical Mechanical Behavior of Rubber Nanocomposites
12.2.1 The Fillers and Their Main Characteristics 292
12.2.2 Filler Reinforcement (Modulus Increase) 295
12.2.3 Mechanical Behavior at Small Strain: the Payne Effect 297
12.2.4 Mechanical Behavior at Larger Strains 299
12.2.5 Aging, Fatigue and Ultimate Properties 300
12.2.6 Conclusion 304
12.3 How to Explain Reinforcement in Rubber Nanocomposites? 304
12.3.1 Filler Morphology and Filler–Filler Interactions 305
12.3.2 Filler–Matrix Interactions 307
12.3.3 Indirect Influence of Fillers on Matrix Crosslinking 311
12.3.4 Influence of Fillers on Rubber Crystallization 312
12.3.5 Conclusion 316
12.4 Modeling Attempts 316
12.4.1 Polymer Network Contribution: Modeling Rubber Behavior 316
12.4.2 Filler Contribution: How to Describe the Composite Effect? 318
12.4.3 Account for the Filler–Filler and Filler–Matrix Interactions 321
12.4.4 Conclusion 323
12.5 General Conclusions 323
References 324

13 Nonlinear Viscoelastic Behavior of Rubbery Bionanocomposites 331
Alireza S. Sarvestani and Esmaiel Jabbari

13.1 Introduction 331
13.2 Rubbery Bionanocomposites 333
13.2.1 Biofiber–Natural Rubber Composites 333
13.2.2 Hydrogel Nanocomposites 334
13.3 Nonlinear Viscoelasticity of Hydrogel Nanocomposites 335
13.3.1 Filler–Gel Interfacial Structure 337
13.3.2 Dynamics of the Adsorbed Layer 338
13.3.3 Macroscopic Properties 341
13.3.4 Model Predictions 342
13.4 Conclusions 345
Acknowledgments 345
References 346

14 Rheological Behavior of Rubber Nanocomposites 353
Philippe Cassagnau and Claire Barrès

14.1 Introduction 353
14.2 Linear Viscoelasticity 355
14.2.1 General Trends 355
14.2.2 Percolation Threshold 357
14.2.3 Equilibrium Shear Modulus 361
14.3 Payne Effect 363
14.3.1 The Limit of Linearity 365
14.3.2 Thixotropy and Recovery 367
14.4 Flow Properties of Rubber Nanocomposites 368
14.4.1 Shear Viscosity 369
14.4.2 Rubber Nanocomposites Based on Nanoclays 376
14.4.3 Extensional Viscosity 378

References 380
14.4.4 Yield Stress 382
14.4.5 Wall Slip 383
14.4.6 Extrudate Swell 384
14.5 Conclusions 384
References 385

15 Electron Spin Resonance in Studying Nanocomposite Rubber Materials 391
S. Valič

15.1 An Approach to the Study of Polymer Systems 391
15.1.1 Introduction 391
15.1.2 Theoretical Background 393
15.2 ESR – Spin Probe Study of Nanocomposite Rubber Materials 397
15.3 Summary 403
References 404

16 Studies on Solid-State NMR and Surface Energetics of Silicas for Improving Filler–Elastomer Interactions in Nanocomposites 407
Soo-Jin Park and Byung-Joo Kim

16.1 Introduction 407
16.2 Surface Modification of Silicas 408
16.2.1 Thermal Treatment 408
16.2.2 Silane Coupling Method 409
16.2.3 Direct Fluorination 409
16.3 Solid-State NMR Analyses of Silicas 409
16.3.1 Thermally Treated Silicas 409
16.3.2 Silane-Treated Silicas 409
16.3.3 Fluorinated Silicas 411
16.4 Surface Energetics of Silicas 411
16.5 Other Surface Analyses of Modified Silicas 413
16.5.1 Thermally Treated Silicas 413
16.5.2 Fluorinated Silicas 414
16.6 Mechanical Interfacial Properties of the Compounds 417
16.6.1 Thermally Treated Silicas 417
16.6.2 Silane-Treated Silicas 419
16.6.3 Fluorinated Silicas 422
16.7 Conclusions 422
References 423

17 Wide-Angle X-ray Diffraction and Small-Angle X-ray Scattering Studies of Rubber Nanocomposites 425
Valerio Cousin

17.1 Introduction 425
17.2 WAXD: An Overview 426
17.3 SAXS: An Overview 427
17.4 Lamellar Fillers 429
17.5 Nonlamellar Fillers 445
17.5.1 Carbon Black 445
17.5.2 Carbon Nanotubes 451
17.5.3 Silica 454
17.5.4 Polyhedral Oligomeric Silsesquioxane 460
17.5.5 Rubber as a Filler or Compatibilizer in Nanocomposites 464
17.6 Characterization of the Matrix in Polymer-Based Nanocomposites 464
17.6.1 Strain-Induced Crystallization 464
17.6.2 Thermoplastic Elastomers 472
References 486

18 Barrier Properties of Rubber Nanocomposites 499
Changwoon Nah and M. Abdul Kader
18.1 Introduction 499
18.2 Theoretical Consideration 501
18.2.1 Fundamental Permeation Theories 501
18.2.2 Diffusion through Polymer Membrane Filled with Particulate and Layered Fillers 503
18.3 Experimental Studies 510
18.4 Applications 520
18.5 Conclusions 522
Acknowledgments 523
References 523

19 Rubber/Graphite Nanocomposites 527
Guohua Chen and Weifeng Zhao
19.1 Introduction and Background 527
19.2 Graphite and its Nanostructure 529
19.2.1 Basic Issues on Graphite 529
19.2.2 Graphite Intercalation Compounds 530
19.2.3 Expanded Graphite 533
19.2.4 Graphite Nanosheets 535
19.2.5 Graphene and Graphite Oxide 537
19.3 Rubber/Graphite Nanocomposites 538
19.3.1 Preparation, Processing and Characterization 539
19.3.2 Properties and Applications 540
19.4 Future Outlook 546
Acknowledgments 546
References 546

20 Aging and Degradation Behavior of Rubber Nanocomposites 551
Suneel Kumar Srivastava and Himadri Acharya
20.1 Introduction 551
20.2 Types of Fillers Used in Rubber Nanocomposites 552
20.2.1 Clay Minerals 552
20.2.2 Layered Double Hydroxide 553
20.2.3 Carbon Nanotubes and Other Inorganic Nanofillers 554
20.3 Aging of Rubber Nanocomposites 554
20.3.1 Natural Rubber 555
20.3.2 Ethylene Propylene Diene Terpolymer 559
20.3.3 Styrene Butadiene Rubber 559
20.3.4 Nitrile Butadiene Rubber 561
20.3.5 Hydrogenated Nitrile Butadiene Rubber 561
20.3.6 Silicone Rubber 563
20.4 Degradation of Rubber Nanocomposites 563
20.4.1 Natural Rubber 563
20.4.2 Ethylene Vinyl Acetate 566
20.4.3 Ethylene Propylene Diene Terpolymer 568
20.4.4 Acrylonitrile Butadiene Rubber 579
20.4.5 Hydrogenated Nitrile Butadiene Rubber 581
20.4.6 Styrene Butadiene Rubber 582
20.4.7 Silicone Rubber 583
20.4.8 Butyl Rubber 587
20.5 Summary 588
References 588

21 Positron Annihilation Lifetime Spectroscopy (PALS)
and Nanoindentation (NI) 595
Dariusz M. Bielinski and Ludomir Ślusarski

21.1 Introduction 595
21.2 Positron Annihilation Lifetime Spectroscopy 597
21.2.1 Introduction 597
21.2.2 Application of PALS to Study Rubber Morphology 599
21.2.3 Final Remarks 618
21.3 Nanoindentation 621
21.3.1 Introduction 621
21.3.2 Application of Nanoindentation to Study Rubber Morphology 623
21.3.3 Application of Nanotribology to Study Rubber Morphology 624
21.3.4 Final Remarks 626
References 627

22 Thermoelasticity and Stress Relaxation Behavior of Synthetic Rubber/
Organoclay Nanocomposites 631
K.M. Sukhyy, E.G. Privalko, V.P. Privalko and M.V. Burmistr

22.1 Introduction 631
22.2 Experimental 632
22.2.1 Materials 632
22.2.2 Methods 633
22.3 Polychloroprene/Organoclay Nanocomposites 633
22.3.1 Structural Characterization of Unstretched Samples 633
22.3.2 Thermoelastic Behavior 634
22.3.3 Stress Relaxation 638
22.3.4 Conclusions 642
22.4 Styrene-co-Butadiene Rubber/Organoclay Nanocomposites 642
22.4.1 Structural Characterization of Unstretched Samples 642
22.4.2 Thermoelastic Behavior 643
22.4.3 Stress Relaxation 645
22.4.4 Conclusions 648
References 648
23 Theoretical Modeling and Simulation of Rubber Nanocomposites 651
Jan Kalfus and Josef Jancar

23.1 Introduction 651
23.2 Brief Theory of Conformation Statistics and Chain Dynamics 653
23.3 Basic Aspects of Rubber Elasticity 657
23.4 Mechanisms of Nanocomposite Reinforcement 659
23.5 Chains at Rubber–Filler Interfaces
 23.5.1 Structural Aspects 664
 23.5.2 Dynamical Aspects 666
23.6 Structural Peculiarities of Rubbery Nanocomposites 668
23.7 Concluding Remarks 672
Acknowledgments 672
References 672

24 Application of Rubber Nanocomposites 675
Miroslawa El Fray and Lloyd A. Goettler

24.1 Introduction 675
 24.1.1 Rubbery Matrices 676
 24.1.2 Nanofillers 676
24.2 Rubber Nanocomposites in Tire Engineering Applications 682
 24.2.1 Tread 682
 24.2.2 Innerliner 684
 24.2.3 Other 687
24.3 Rubber Nanocomposite Membranes 687
24.4 Applications of Rubber Nanocomposites in Sporting Goods 689
24.5 Advanced Nanocomposites for Airspace Applications 690
24.6 Nanorubbers in Medicine and Healthcare 691
24.7 Conclusions 693
References 693

Index 697