Proceedings of the Ninth International Conference on Fast Sea Transportation (FAST2007)

September 23-27, 2007
Shanghai, China

Organized by
Chinese Society of Naval Architects and Marine Engineers
China Ship Scientific Research Center
Shanghai Jiao Tong University

Edited by
Weicheng Cui
Shitang Dong
Bolin Kang
Ming Zhang

China Ship Scientific Research Center
Wuxi, Jiangsu, China
CONTENTS

Keynote lectures

An Overview of Yellow Sea Transportation System ... (1)
 Jae Wook Lee, Seung-Hee Lee, Inha University, Korea

Advances in Technology of High Performance Ships in China .. (18)
 You-Sheng Wu, Qi-Jun Ni and Wei-Zhen Ge, China Ship Scientific Research Center, China

Design of Fast Ships and High-speed Crafts (1)

Container Ship and Port Development: A Review of State-of-the-Art ... (31)
 Branislav Dragović and Dong-Keun Ryoo, Korea Maritime University, Korea

JHSS (Joint High-Speed Sealift Ship) Hull Form Development, Test and Evaluation (40)
 Siu C. Fung, Gabor Karfiath, Dominic S. Cusanelli and Donald McCallum,
 Carderock Division, Naval Surface Warfare Center (NSWCCD), USA

Hard Chine Design with Developable Surfaces .. (49)
 F. Péres-Arribas, Naval Architecture School of Madrid, Universidad Politécnica de Madrid, Spain

Design of Fast Ships and High-speed Crafts (2)

Design Development and Evaluation Of Affordable High Speed Naval Vessels for Offshore Service (55)
 Rubin Sheinberg, Chris Cleary and Karl Stambaugh, U.S. Coast Guard, USA

Lex Keuning, Delft Technical University, Netherlands

The Development of ACV Technology in China .. (64)
 Tao Ma, Shihai Lv, Chunguang Liu and Chengjie Wu,
 Marine Design & Research Institute of China (MARIC), China

Improvement of Taking-off and Alighting Performances of a Flying Boat Utilizing Hydrofoil (71)
 Yoshiaki Hirakawa, Tugukiyo Hirayama, Takehiko Takayama and Asuka Kosaki,
 Yokohama National University, Japan

Design of Fast Ships and High-speed Crafts (3)

Wing-In-Ground (WIG) Craft (Ekranoplan). Practical Aspects of the Classification and Survey According to RS Instruments ... (76)
 Vladimir V. Gadalov, Mikhail A. Gappoev and Mikhail A. Kuteynikov,
 Russian Maritime Register of Shipping, Russia

Development of a Wing-In-Surface-Effect Ship for Research Purposes in Cooperation Between Vietnam and Japan .. (80)
 Nguyen Tien Khiem, Pham Vu Uy and Phan Xuan Tang,
 Institute of Mechanics, Academy of Science and Technology, Vietnam;
 Syozo Kubo, Private, Koyama, Tottori, Japan;
 Hiromichi Akimoto, University of Tokyo, Japan
Preliminary Conceptual Design of 20-Passenger Class WIG Craft
Myung-Soo Shin, Yoonsik Kim, Gyeong-Joong Lee, Kuk-Jin Kang, Young-Ha Park and Young-Yeon Lee, Maritime and Ocean Engineering Research Institute, Korea

Design of Fast Ships and High-speed Crafts (4)
Trajectory Tracking for an Ultralight WIG
Caterina Grillo, Calogero Caccamo, Cinzia Gatto and Antonino Pizzolo, Flight Mechanics Division, Dept. of Transportation Engineering, University of Palermo, Italy

Design Features of an Unconventional Passenger Vessel with Low Environmental Impact
Dario Boote and D. Mascia, University of Genova, Italy

A New Paradigm for High-Speed Monohulls: the Bow Lifting Body Ship
Todd J. Peltzer, Troy S. Keipper, Brian Kays and Gary Shimozono, Navatek, Ltd., USA

Resistance and Flow (1)
A Practical Method for Evaluating Steady Flow about a Ship
Chi Yang and Hyun Yul Kim, George Mason University, USA
Francis Noblesse, NSWCDD, USA

Simulations of Ship Flows at High Froude Numbers Using Smoothed Particles Hydrodynamics
Guillaume Oger, David Le Toulé, Bertrand Alessandrini and Pierre Ferrant, Ecole Centrale de Nantes, France

Numerical Investigation of the Wave Pattern and Resistance of the Naval Combatant INSEAN 2340 Model
Andreja Werner, Tihomir Mihalic and Nastia Degiuli, University of Zagreb, Croatia

Resistance and Flow (2)
Research on Multi-hull's Configuration Based on New Slender-Ship Wave Resistance Theory
Duanfeng Han, Haipeng Zhang and Hongde Qin, College of Shipbuilding, Harbin Engineering University, China

Experimental Investigations of the Waves Generated by High-speed Ferries
Dimitris S. Chalkias and Gregory J. Grigoropoulos, National Technical University of Athens, Greece

Theory and Experimental Study on the Pentamaran Wave Making Resistance Characteristics
Junsong He, Zhen Chen and Xi Xiao, Shanghai Jiaotong University, China

Resistance and Flow (3)
The Effect of Draft on Bulbous Bow Performance
Richard A. Royce and Patrick J. Doherty, Webb Institute, USA

Performance of a Stern Flap with Waterjet Propulsion
Michael B Wilson, Scott Gowing and Cheng-Wen Lin, Naval Surface Warfare Center, Carderock Division, USA

On the Effect of Transom Area on the Resistance of Hi-Speed Mono-Hulls

—VI—
Jacques B. Hadler, Webb Institute, USA; Jessica L. Kleist, NSWCCD – Ship Systems Engineering Station, USA; Matthew L. Unger, Seaworthy Systems Inc., USA

Resistance and Flow (4)
The Decay of Catamaran Wave Wake in Shallow Water .. (184)
Alex Robbins, Giles Thomas, Gregor Macfarlane and Martin Renilson, Australian Maritime College, Australia;
Ian Dand, BMT SeaTech Ltd, Southampton, England
Combined Numerical and Experimental Evaluation of the Flow Field around a Racing Yacht (192)
Stelios G. Perissakis, Gregory J. Grigoropoulos and Dimitris E. Liarokapis, National Technical University of Athens (NTUA), Greece
Investigation of Planing Craft in Shallow Water .. (200)
Benjamin Friedhoff, Institute of Ship Technology and Transport Systems (IST), Germany;
Rupert Henn, Tao Jiang and Norbert Stuntz, Development Center for Ship Technology and Transport Systems (DST), Germany
The Dynaplane Design for Planing Motorboats .. (208)
Eugene P. Clement and John G. Hoyt III, Naval Surface Warfare Center, USA;
Lawrence J. Doctors, The University of New South Wales, Australia

Resistance and Flow (5)
Study on the Gas Turbine Inlet System of a Hovercraft .. (215)
Dejuan Chen, Weizhong Qian and Jun Sun, Marine Design & Research Institute of China (MARIC), China
Theory and Practice of Application of the Interceptors on High-speed Ships (221)
Gregory Fridman and Kirill Rzheastovensky, St. Petersburg State Marine Technical University (SMTU), Russia
Alexander Shlyakhtenko, Marine Design Bureau “Almaz”, Russia
Experimental Investigation of Interceptor Performance .. (237)
Sverre Steen, Norwegian University of Science and Technology (NTNU), Norway

Performance—WIG and SES
Influence of Increased Weight on SES-performance in a Seaway ... (245)
Christian Wines and Hans Olav Midtun, Norwegian Defence Systems Management Division, Norway;
Sverre Steen, Norwegian University of Science and Technology (NTNU), Norway;
Magnus Tvete, Norwegian Marine Technology Research Institute (MARINTEK), Norway
Research on Modeling and Simulation for WIG Craft Space Motion (254)
Qian Zhou, Ya-Jun Shi, Xing-Fa Xu and Chang-Hua Yuan, China Ship Scientific Research Center (CSSRC), China
Self-propulsion Model Test of a Wing-In-Surface-Effect-Ship with Canard Configuration, Part 3

Hiromichi Akimoto, The University of Tokyo, Japan; Syozo Kubo and Masahide Kawakami, Tottori University, Tottori, Japan

Drag Reduction & Air Cavity Boat

Experimental Study on the Hull Form of High-speed Air Cavity Craft

Wencai Dong, Zhihua Liu, Yongpeng Ou and Rixiu Guo, Naval Univ. of Engineering, China

Potential of the Artificial Air Cavity Technology for Raising the Economic Efficiency of China's Inland Waterway Shipping

Andrey V. Sverchkov, Krylov Shipbuilding Research Institute, Russia

Experimental Method for Calculation Drags Reduction in Air Cavity Boat

Ahmad Fakhraee, Manucher Rad and Hamid Amini, Mechanical School, Sharif University of Technology, Iran

Propulsion and Cavitation (1)

Erosion Damages on Propellers and Rudders, Caused by Cavitation

Juergen Friesch, Hamburgische Schiffbau-Versuchsanstalt GmbH (HSVA), Germany

Development of New Waterjet Installations for Applications with Reduced Transom Width

Norbert Bulten and Robert Verbeek, Wärtsilä Propulsion, The Netherlands

Very Large Waterjet with Adjustable Tip Clearance

Mats Heder, Kamewa Waterjets, Rolls-Royce AB, Sweden

Propulsion and Cavitation (2)

Propeller Wake Evolution, Instability and Breakdown by Flow Measurements and High Speed Visualizations

Mario Felli, INSEAN, Italy; G. Guj and R. Camusi, University of "Roma Tre", Italy; Prediction of Open Water Characteristics of Podded Propulsors Using a Coupled Viscous/Potential Solver

Vladimir I. Krasilnikov and Jia Ying Sun, MARINTEK, Norway; Alexander S. Achkinadze and Dmitry V. Ponkratov, State Marine Technical University, Russia

Steady Analysis of Viscous Flow around Ducted Propellers: Validation and Study on Scale Effects

Vladimir Krasilnikov and Jia Ying Sun, MARINTEK, Norway; Zhi-Rong Zhang and Fang-Wen Hong, CSSRC, China; Dmitry V. Ponkratov, State Marine Technical University, Russia

Propulsion and Cavitation (3)

Development of 5-blades SPP Series for Fast Speed Boats

A.V. Pustoshny, Valery P. Boiutsov, Eduard P. Lebedev and Anton A. Stroganov, Krylov Shipbuilding Research Institute, Russia
A Series of Surface Piercing Propellers and Its Application .. (343)

Enbao Ding, China Ship Scientific Research Center (CSSRC), China

Mathematical Expressions of Thrust and Torque of Gawnburril Propeller Series for High Speed Crafts Using Artificial Neural Networks ... (348)

Kourosh Koushan, MARINTEK, Norway

Seakeeping (1)

Fast Ship Motions in Coastal Regions ... (360)

Ray-Qing Lin and John G. Hoyt III, Naval Surface Warfare Center, Carderock Division, USA

Seakeeping Analysis of the Lifting Body Technology Demonstrator Sea Flyer Using Advanced Time-Domain Hydrodynamics ... (368)

Christopher J. Hart and Todd J. Peltzer, Navatek, USA;
Kenneth M. Weems, Science Applications International Corporation, USA

Predicting Motions of High-Speed Rigid Inflatable Boats: Improved Wedge Impact Prediction (377)

D.A. Hudson, Stephen R. Turnock and Simon G. Lewis, University of Southampton, UK

Seakeeping (2)

Porpoising and Dynamic Behavior of Planing Vessels in Calm Water (384)

Hui Sun and Odd M. Faltinsen, Norwegian University of Science and Technology, Norway

Numerical Analysis of Seakeeping Performances for High Speed Catamarans in Waves (393)

Yoshiyuki Inoue, Yokohama National University, Japan;
Md. Kamruzzaman, Nippon Kaiji Kyokai, ClassNK, Japan

Trimaran Motions and Hydrodynamic Interaction of Side Hulls .. (401)

Yuefeng Wei, Wenyang Duan and Shan Ma, Harbin Engineering University, China

Seakeeping (3)

Prediction of Hydrodynamics Performance of Catamarans Accounting for Viscous Effects (410)

Xue-Liang Wang, Xue-Kang Gu and Quan-Ming Miao, China Ship Scientific Research Center (CSSRC), China

A Comparison of Roll Prediction Algorithms with Model Test Data of a High Speed Trimaran (417)

Allen Engle and Ray-Qing Lin, David Taylor Model Basin (NSWCCD), USA

Catamaran Motions in Beam and Oblique Seas ... (426)

Giles Thomas Mani Hackett, Australian Maritime College, Australia;
Lawrence J. Doctors, The University of New South Wales, Australia;
Patrick Couser, Sunnypowers Limited, France

Seakeeping (4)

On the Parametric Rolling of Ships in Regular Seas Using a Numerical Simulation Method (434)

Bor-Chau Chang, National Kaohsiung Marine University, Taiwan, China
Experimental and Theoretical Study of the Roll Stability of Hovercraft Moving at Yaw
Zong-Ke Zhang, Ping-Ping Tao and Tao Ma,
Marine Design & Research Institute of China (MARIC), China

Active Motion Control of High-Speed Vessels in Waves by Hydrofoils
Jang-Whan Bai and Yonghwan Kim, Seoul National University, Korea

Seakeeping / Air Cavity Boat
Passenger Comfort Assessment Method for High Speed Craft Design
Antti Rantanen and Seppo Kivimaa, VTT Vehicle Engineering, Finland

Numerical and Experimental Study of Green Water on a Moving FPSO
Xiufeng Liang and Jianmin Yang, Shanghai Jiao Tong University, China;
Chi Yang, Haidong Lu and Rainald Löhner, George Mason University, USA

Numerical Studies on the Hydrodynamic Performance and the Start-up Stability of High Speed Ship Hulls with Air Plenums and Air Tunnels
Jin-Keun Choi, Chao-Tsung Hsiao and Georges L. Chahine, Dynaflo, Inc., USA

Maneuvering and Controlling (1)
Analysis and Design of a Hydrofoil for the Motion Control
Ching-Yeh Hsin, National Taiwan Ocean University, Taiwan, China;
Hua-Tung Wu and Chun-Hsien Wu, United Ship Design and Development Center, Taiwan, China

Research on Plane Maneuverability Stability of ACV by Phase Plane Method
Chunguang Liu, Pingping Tao and Tao Ma,
Marine Design & Research Institute of China, China

Validation of a 4DOF Manoeuvring Model of a High-speed Vehicle-Passenger Trimaran
Tristan Perez and Andrew Ross, Norwegian University of Science and Technology, Norway;
Tony Armstrong, Austal Ships, Australia;
Thor I. Fossen, Norwegian University of Science and Technology, Norway

Maneuvering and Controlling (2)
Development of a Nonlinear Simulation for Testing of Control Systems in a General Class of Lifting Body Vessels, SWATHs, and Hydrofoils
Benjamin Rosenthal, Navatek Ltd., USA

Analysis of Asymmetrical Shaft Power Increase during Tight Manoeuvres
Michele Viviani and Carlo Podenzana Bonvino, Genoa University, Italy;
Salvatore Mauro, INSEAN, Rome, Italy;
Marco Cerruti, Naval Vessel Business Unit, Italy;
D. Guadalupi and A. Menna, SPM MARSTAT, Italian Navy, Italy
Towards Numerical Dynamic Stability Predictions of Semi-Displacement Vessels
Wei Zhu and Odd M. Faltinsen, Norwegian University of Science and Technology, Norway
Maneuvering and Controlling (3)

Concepts & Principles for Creating an Autonomous and Intelligent WIG Vehicle for Coastal Patrolling and Search & Rescue Operations .. (530)

Alexander Nebylov and Sukrit Sharan, International Institute for Advanced Aerospace Technologies of State Univ. of Aerospace Instrumentation, Russia

Research on the Relationship between the Required Power for Level Flying and Flight Height Stability of WIG Craft ... (537)

Chang-Hua Yuan and Ya-Jun Shi, China Ship Scientific Research Center, China

Investigation on Numerical Prediction of WIG’s Aerodynamics and Longitudinal Stability .. (540)

Fu Xing, Chang-Hua Yuan and Bao-Shan Wu, China Ship Scientific Research Center, China

Safety and Operation

Development of IMO Requirements to Qualification of Officers on WIG Craft .. (545)

Alexander I. Bogdanov, Central Marine Research & Design Institute Ltd. (CNIIMF), Russia

The Generic Management System Approach for Addressing Maritime Emergency Scenario Situations .. (551)

Chengi Kuo, University of Strathclyde, UK; Andy Humphreys and Stuart Wallace, Stena Line, U.K.

Robust Real-Time Microcontroller-based Control Hardware for a 21.3 m Bow Lifting Body Technology Demonstrator Craft .. (558)

Robert Knapp, John Elm, and Brian Kays, Navatek, Ltd., USA

Structure: Wave Induced Loads & Responses (1)

Development of an Integrated Monitoring System and Monitoring of Global Hull Loadings on High Speed Mono-Hull .. (566)

Seppo Kivimaan and Antti Rantanen, VTT Vehicle Engineering, Finland

Numerical Simulation of Whipping Responses induced by Stern Slamming Loads in Following Waves .. (574)

Han-Bing Luo, Zheng-Quan Wan, Qiang Qiu and Xue-Kang Gu, China Ship Scientific Research Center, China

Full-Scale Design Evaluation of the Visby Class Corvette .. (583)

Anders Rosén, Karl Garme and Jakob Kutenkeuler, KTH Centre for Naval Architecture (Marina system), Sweden

Structure: Wave Induced Loads/Whipping & Responses (2)

The Method for Evaluating the Design Wave Loads on SWATH Ships .. (589)

Ji-ru Lin, Li-guo Shi, Guo-hong You and Jia-yu Qian, China Ship Scientific Research Center, China

Analysis of Bending Moments in Surface Effect Ship Structure by Russian Regulation* .. (595)

Ali Dehghanian, Kambiz Alempour, Hydro Aerostatic Dept, MT University, Iran; Hamid Amini, Sharif Technical University, Iran
The Whipping Vibratory Response of a Hydroelastic Segmented Catamaran Model .. (600)
Jason Lavroff, Michael R. Davis and Damien S. Holloway, University of Tasmania, Australia;
Giles Thomas, Australian Maritime College, Australia

Structure: Slamming, Whipping & Impact
The Effect of Air Cushion on the Slamming Pressure Peak Value of Trimaran Cross Structure (608)
Zhenglin Cao and Weiguo Wu, Wuhan University of Technology, China
The Effect of Speed and Sea State for Probability of Ships Slamming .. (612)
Zhen Chen and Xi Xiao, Shanghai Jiaotong University, China
Computational Modelling of Wet Deck Slam Loads with Reference to Sea Trials (616)
Michael R. Davis, University of Tasmania, Australia;
James R. Whelan, INTEC Engineering Pty Ltd. Level 2, Australia;
Giles A. Thomas, Australian Maritime College, Tasmania, Australia

Strength & Fatigue
Research on FEM Generation Techniques in Ship CAE Analysis .. (625)
Jian-hai Jin, Wen-hao Leng, Feng Li and Wei Zhou,
China Ship Scientific Research Center, China;
Hai Pu, Southern Yangtze University China
Influence of Wave-induced Ship Hull Vibrations on Fatigue Damage .. (630)
Jong-Jin Jung, Pan-Young Kim, Hyun-Soo Shin and Jin-Soo Park,
Maritime Research Institute, Hyundai Heavy Industries Co. Ltd. Korea
Structural Design of Ramp in Aluminum Alloy for ACV .. (635)
Ping Zhang, Chengjie Wu, Yunchao Wang and Jun Wang,
Marine Design & Research Institute of China (MARIC), China

Strength / Composite Materials
Optimization of Planing Hull Structure Design ... (641)
Santini Julien, Philip Garret Kosarek, Regu Ramoo
Altair Engineering, Michigan, USA
Experimental Investigation of a Composite Patch Reinforced Cracked Steel Plate in Static Loading (648)
Lazaros S. Mirisiotis and Nicholas G. Tsouvalis,
National Technical University of Athens, Greece
The Right Level of Composite Technology ... (657)
Richard Downs-Honey, High Modulus, Auckland, New Zealand