Fracture Mechanics of Concrete and Concrete Structures

VOLUME 1: New Trends in Fracture Mechanics of Concrete

Editors

Alberto Carpinteri
Politecnico di Torino, Department of Structural Engineering and Geotechnics, Italy

Pietro G. Gambarova
Politecnico di Milano, Department of Structural Engineering, Italy

Giuseppe Ferro
Politecnico di Torino, Department of Structural Engineering and Geotechnics – Italian Group of Fracture, Italy

Giovanni A. Plizzari
University of Brescia, Department of Civil Engineering, Architecture, Land and Environment, Italy
Table of contents

Preface to Volume 1 XIX
Sponsors XXI

VOLUME 1 -- New Trends in Fracture Mechanics of Concrete

Part I Theoretical and numerical Methods in fracture mechanics of concrete 1
Computational fracture mechanics of concrete structures: A retrospective through multiple lenses 3
J.M. Emery, J.D. Hochhalther & A.R. Ingraffea
Cohesive fracture and size effect in concrete 17
L. Cedolin & G. Cusatis
Fractals, statistics and size-scale effects on concrete strength 31
A. Carpinteri & S. Puzzi
Size and shape effects on fracture strength of concrete 39
H.-K. Man & J.G.M. van Mier
Asymptotic analysis of boundary effects on concrete fracture 45
K. Duan, X.Z. Hu & F.H. Wittmann
Dimensional effects on failure of concrete loaded in Mode II and III 55
G. Ferro, B. Chiaia & F. Gianola
Path and dynamics of cracks propagating in a disordered material under mode I loading 63
L. Ponson, D. Bonamy, E. Bouchaud, G. Cordeiro, R.D. Toledo & E.M.R. Fairbairn
A general static approach to size-effect in cementitious materials 69
G. Rosati & M.P. Natali Sora
Three-dimensional analysis of crack geometry 77
T. Zhang, G. Nagy, E.N. Nagy & E.N. Landis
3D discrete simulations of fracture in concrete specimens 85
S. Saito & T. Higai
Simulation of fracture at different loading rates using molecular dynamics 93
J. Kim, J. Lim & Y.M. Lim
Accurate simulation of frictionless and frictional cohesive crack growth in quasi-brittle materials using XFEM 99
B.L. Karihaloo & Q.Z. Xiao
Structural geometry, fracture process zone and fracture energy 111
V. Veselý, L. Řoutil & Z. Keršner
From discontinuous to macroscopic modeling of mode I cracking behavior in cement-based composites
J.-L. Tailhan, P. Rossi, J. Lombart & F. Guerrier

How to extract the crack opening from a continuous damage finite-element computation?
F. Dufour, G. Piaudier-Cabot, M. Choinska & A. Huerta

Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method
Z.J. Yang & A.J. Deeks

An enhanced cohesive crack element for XFEM using a double enriched displacement field
J.F. Mougaard, P.N. Poulsen & L.O. Nielsen

Strong discontinuity formulations: A comparative study
J. Alfaiate & L.J. Sluys

Simulation of crack opening through a corner node, using rigid-plastic interface elements
D. Ciancio, I. Carol & M. Cuomo

Advances in meso-mechanical analysis of concrete specimens using zero-thickness interface elements
I. Carol, A. Iltari, C.M. Lopez & A. Caballero

Numerical model for time-dependent fracturing of concrete structures and its applications
G. Di Luzio & L. Cedolin

Mixed-mode pressurized fracture at the dam-foundation joint
F. Barpi & S. Valente

Simplified stability analysis of quasi-brittle notched columns
L. Fenu

How volumetric-deviatoric coupling influences crack prediction in concrete fracture tests
R. Remping & P. Grassl

Propagation analysis of fluid-driven fracture using the discrete crack approach
J.M. Segura & I. Carol

Part II Experimental Methods in Fracture Mechanics of Concrete

Strength and fracture energy of concrete in seawater
F.H. Wittmann, Z. Sun & T. Zhao

Effects of the aggregate size and specimen dimensions on the brittle fracture of concrete
M.A. Issa & A. Chudnovsky

Experimental and numerical analysis of the fracture process in the splitting tension test of concrete
V. Maldrics & H.S. Müller

An experimental study on the development of fracture process in plain concrete beams using b-value analysis of AE signals
B.K. Raghu Prasad & R. Vidyu Sagar

Specimen geometry in uniaxial tension test of concrete
H. Akita, H. Koide & H. Mihashi

VI
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture properties of cement paste and mortar: An experimental investigation</td>
<td>249</td>
</tr>
<tr>
<td>Y. Zhu, S.L. Xu & Y.H. Zhao</td>
<td></td>
</tr>
<tr>
<td>Characterization of confined mixed-mode fracture in concrete</td>
<td>257</td>
</tr>
<tr>
<td>O.I. Montenegro, I. Carol & D. Sfer</td>
<td></td>
</tr>
<tr>
<td>Biaxial testing machine for mixed mode cracking of concrete</td>
<td>263</td>
</tr>
<tr>
<td>L. Østergaard, J.F. Olesen & P.N. Poulsen</td>
<td></td>
</tr>
<tr>
<td>Direct measurement of double-K fracture parameters and fracture energy using wedge-splitting test on compact tension specimens with different size</td>
<td>271</td>
</tr>
<tr>
<td>S. Xu, D. Bu, H. Gao, S. Yin & Y. Liu</td>
<td></td>
</tr>
<tr>
<td>The experimental determination of double-K fracture parameters of concrete under water pressure</td>
<td>279</td>
</tr>
<tr>
<td>Experimental and numerical studies on the load-carrying capacity of notched concrete beams</td>
<td>285</td>
</tr>
<tr>
<td>Z. Shi, M. Nakano & K. Yamakawa</td>
<td></td>
</tr>
<tr>
<td>Experiments and analyses of fracture properties of grouting mortars</td>
<td>293</td>
</tr>
<tr>
<td>S. Ishiguro</td>
<td></td>
</tr>
<tr>
<td>Assessment of a tensile constitutive model considering various loading histories for early age concrete</td>
<td>299</td>
</tr>
<tr>
<td>M. Kunieda, W. Srisoros, N. Ueda, H. Nakamura & Y. Ishikawa</td>
<td></td>
</tr>
<tr>
<td>Determination of concrete fracture toughness from modal dynamic response of notched beams</td>
<td>309</td>
</tr>
<tr>
<td>Debonding and fracture between deformed bars and early-age concrete</td>
<td>317</td>
</tr>
<tr>
<td>Y. Mimura, I. Yoshitake, K. Morimoto & S. Hamada</td>
<td></td>
</tr>
<tr>
<td>Bi-material fracture properties of concrete-concrete cold joints</td>
<td>325</td>
</tr>
<tr>
<td>P. Subba Rao & J.M. Chandra Kishen</td>
<td></td>
</tr>
<tr>
<td>Proposal of an optimal experimental method for the evaluation of concrete shear transfer mechanism</td>
<td>333</td>
</tr>
<tr>
<td>Y. Takase, M. Ueda & T. Wada</td>
<td></td>
</tr>
<tr>
<td>Part III Constitutive damage modelling of concrete</td>
<td>341</td>
</tr>
<tr>
<td>Elastoplastic nonlocal damage model for concrete and size effect analysis</td>
<td>343</td>
</tr>
<tr>
<td>A. Krayani, F. Dufour & G. Piaudier-Cabot</td>
<td></td>
</tr>
<tr>
<td>A nonlocal coupled damage-plasticity model for concrete</td>
<td>351</td>
</tr>
<tr>
<td>G.D. Nguyen & A.M. Korsunsky</td>
<td></td>
</tr>
<tr>
<td>Plastic modeling with nonlocal damage of concrete subject to mechanical loading</td>
<td>361</td>
</tr>
<tr>
<td>A. Mohamad-Hussein & J.F. Shao</td>
<td></td>
</tr>
<tr>
<td>Parameter identification of continuum models for localized failure</td>
<td>369</td>
</tr>
<tr>
<td>C. Iacono & L.J. Sluys</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics framework for robust computations of loading-induced anisotropic damage</td>
<td>377</td>
</tr>
<tr>
<td>R. Desmorat, F. Gatuingt & F. Raguenneau</td>
<td></td>
</tr>
<tr>
<td>Stress-based elastic anisotropic unilateral degradation model for concrete</td>
<td>385</td>
</tr>
<tr>
<td>J.Y. Wu & J. Li</td>
<td></td>
</tr>
</tbody>
</table>
Anisotropic damage of concrete: A three-dimensional approach with energy-based loading surfaces and a new evolution law
P. Pröchtel & U. Häußler-Combe

Microstructure-based failure surfaces of matrix-inclusion materials: The origin of J3 plasticity highlighted by limit analysis
J. Füssl & R. Lackner

Conservation laws for multiphase fracturing materials
G. Romano, R. Barretta & M. Diaco

Modeling of the influence of the damage on the behavior of concrete during tensile-compressive loading
S. Mertens, J. Vantomme & J. Carmeliet

Fracture via a sequence of events: A saw-tooth softening model
J.G. Rots, S. Invernizzi & B. Belletti

A new multi-axial failure criterion for concrete
M. Como & R. Luciano

Stochastic regularisation of lattice modelling for the failure of quasi-brittle materials
C. Joseph & A.D. Jefferson

Modelling compressive cracking in concrete by a modified lattice model
M.M. Abreu, J.V. Lemos, J. Carmeliet & E. Schlangen

Digital image correlation techniques applied to post-process discrete modeling
A. Delaplace & F. Hild

3D multi-scale modeling of mortar mechanical behavior and effects of microstructural changes
F. Bernard, S. Kamali-Bernard, W. Prince & M. Hjiaj

Micropolar peridynamic modeling of concrete structures
W. Gerstle, N. Sau & E. Aguflera

Part IV Time effects in the damage and fracture of concrete

Modelling of coupled multifield problems in concrete by means of porous media mechanics
F. Pesavento, B.A. Schrefler & D. Gawin

Coupling between creep and cracking in tension
N. Revron, F. Benboudjema, J.M. Torrenti, G. Nahas & A. Millard

Coupling between leaching and creep of concrete
J.M. Torrenti, V.H. Nguyen, H. Colina & F. Le Maou

Coupling creep and damage in concrete through a constant parameter
M. Bottini, F. Dufour & G. Pijaudier-Cabot

Hygro-mechanical modeling of cracked concrete in the framework of the X-FEM
S. Jox, C. Becker & G. Meschke

Modeling the hygro-mechanical response of quasi-brittle materials
P. Moonen, L.J. Sluys & J. Carmeliet