Robots and Robot Venues: Resources for AI Education

Papers from the AAAI Spring Symposium

Douglas Blank, Zachary Dodds, Paul Rybski, Jerry Weinberg, and Holly Yanco, Cochairs

Technical Report SS-07-09

AAAI Press
Menlo Park, California
Contents

Preface / ix
Zachary Dodds, Douglas Blank, Paul Rybski, Jerry Weinberg, and Holly Yanco

A Pragmatic Global Vision System for Educational Robotics / 1
John Anderson and Jacky Baltes

Mini Grand Challenge Contest for Robot Education / 7
Robert Avanzato

Advanced Robotics Projects for Undergraduate Students / 10
Douglas Blank, Deepak Kumar, James Marshall, and Lisa Meeden

Robotics Education using Embedded Systems and Simulations / 16
Thomas Bräunl

A Robotics Introduction to Computer Science / 20
Debra T. Burhans

Using the AIBOs in a CS1 Course. / 24
John Chilton and Maria Gini

Designing Robot Competitions that Promote AI Solutions: Lessons Learned Competing and Designing / 29
Jeffrey R. Croxell, Ross Mead, and Jerry B. Weinberg

Roomba Pac-Man: Teaching Autonomous Robotics through Embodied Gaming / 35
Brendan Charles Dickinson, Odest Chadwicke Jenkins, Mark Moseley, David Bloom, and Daniel Hartmann

Robotics in Early Undergraduate Education / 40
David L. Duke, Justin Carlson, and Chuck Thorpe

Integrating Low-Cost Robot Devices into Pyro / 44
Tim Fossum and James Snow

Finding the "Right" Robot Competition: Targeting Non-Engineering Undergraduates / 49
Susan Eileen Fox

Educational Haptics / 53
David I. Grow, Lawton N. Venter, and Allison M. Okamura

Extra-Curricular Robotics: Entry-Level Soccer for Undergraduates / 59
Susan Imberman, Aleksandr Barkan, and Elizabeth Sklar

Student Feedback on Robotics in CS1 / 65
Susan P. Imberman, Roberta Klibaner, and Sarah Zelikovitz
Concurrency, Robotics, and RoboDeb / 69
Christian L. Jacobsen and Matthew C. Jadud

An Undergraduate Course in Robotics and Machine Intelligence / 74
Ben A. Juliano and Renee S. Renner

Getting Down and Dirty: Incorporating Homogeneous Transformations and Robot Kinematics into a Computer Science Robotics Class / 80
Jennifer S. Kay

Undergraduate Capstone Projects on Multi-Robot Systems / 82
Christopher Kitts

Low-Cost On-Board Linux, Vision, Wi-Fi, and More for the Roomba Robotics Base / 88
Tod E. Kurt

Real Robots Don’t Drive Straight / 90
Fred G. Martin

Introducing the Blackfin Handy Board / 95
Fred G. Martin and Andrew Chanler

Materials for Enabling Hands-On Robotics and STEM Education / 99
Maja J. Mataric, Nathan Koenig, and David Feil-Seifer

Demonstrating the Capabilities of MindStorms NXT for the AI Curriculum / 103
Myles McNally and Frank Klassner

Eclectic Robotics for a Mixed Audience / 105
Jeanine Meyer and Rona Gurkewitz

Beyond Botball: A Software Oriented Robotics Challenge for Undergraduate Education / 107
David P. Miller, Charles Winton, and Jerry B. Weinberg

Robotics Education in Emerging Technology Regions / 112
G. Ayorkor Mills-Tettey, M. Bernardine Dias, Brett Browning, and Nathan Amanquah

TeRK: A Flexible Tool for Science and Technology Education / 117
Illah Nourbakhsh, Emily Hamner, Tom Lauwers, Carl DiSalvo, and Debra Bernstein

Aerial Robotics Competition: Lessons in Autonomy / 123
Paul Y. Oh, Keith W. Sevcik, and William E. Green

Leveraging the Nanogram League RoboCup Competition in the Undergraduate Classroom / 129
Jenelle Armstrong Piepmeier and Samara L. Firebaugh

Integrating Service Learning with Undergraduate Robotics Research / 132
Renee S. Renner and Benjoe A. Juliano
Robots Can Wear Multiple Hats in the Computer Science Curriculum at Liberal Arts Colleges / 138
Christine Shannon

Robotics Across the Curriculum / 141
Elizabeth Sklar, Simon Parsons, and M. Q. Azhar

Using Robotic Competitions in Undergraduate Philosophy Courses: Studying the Mind through Simple Robotics / 147
John P. Sullins III

Enhance Students' Hands-On Experience with Robotics / 149
Fang Tang

Teleworkbench: A Remotely-Accessible Robotic Laboratory for Education / 153
Andry Tanoto, Ulf Witkowski, and Ulrich Ruckert

Envisioning the Roomba as AI Resource: A Classroom and Laboratory Evaluation / 155
Ben Tribelhorn and Zachary Dodds

Robots in Education: Student Perspectives from the Classroom and the Field / 161
Colleen van Lent, Adder Argueta, Russel Casella, and Nate Jahns

Educating Teacher Students and Pupils through Robotics Courses and Olympiads: A Tiered Approach / 165
Igor M. Vemer and Evgeny Korchnoy

Robotics Olympiads: A New Means to Facilitate Conceptualization of Knowledge Acquired in Robot Projects / 171
Igor M. Vemer, David J. Ahlgren, and David P. Miller

Robots in an Interdisciplinary Course in the Liberal Arts / 177
Ellen L. Walker and Lee Braver

RoadNarrows Presents General Purpose Brain-Packs, Controller Boards, and Robots for Education and Research / 180
Kim Wheeler

Map-Making with a Four-Legged Mobile Robot / 183
Benjamin H. Willard and Kurt D. Krebsbach

Robotics Tools in Neuroscience Education / 187
Liudmila S. Yafremava, J. Jill Rogers, and M. Anthony Lewis

Arthotics: Combining Art and Robotics to Broaden Participation in Computing / 191
Holly A. Yanco, Hyun Ju Kim, Fred G. Martin, and Linda Silka