Biocatalysis
Biochemical Fundamentals and Applications

Peter Grunwald
University of Hamburg, Germany

Imperial College Press
Contents

Preface v

1. Introduction 1
 1.1 Advantages and Disadvantages of Biocatalysts 3
 1.2 Biocatalysis – An Interdisciplinary Science 6
 1.3 The Impact of Biocatalysis on Teaching Natural Science 8

2. History of Biocatalysis 11

3. Classification of Enzymes 15

4. Non-protein Groups in Biocatalysis 22
 4.1 Thiamine 24
 4.2 Niacin and Riboflavin 28
 4.3 Vitamin B6 31
 4.4 Folic Acid, Tetrahydrofolate and Dihydrobiopterin 38
 4.5 Cofactors in Methanogenesis 45
 4.6 Ascorbic Acid Exerts a Protective Function 50

5. Introduction into Kinetics 54
 5.1 Rate of Reactions and Rate Equations 54
 5.2 Reaction Mechanisms 56
 5.3 Steady-state 58
 5.4 Pre-equilibria 59
 5.5 Temperature Dependence 60
 5.5.1 Chemical equilibria and temperature 61
 5.5.2 Arrhenius parameters 64
 5.5.3 Transition state theory 65
 5.6 Reactions in Solutions 68
 5.6.1 Diffusion controlled reactions 70
6. Enzyme Kinetics
 6.1 The Michaelis-Menten Equation
 6.1.1 Determination of K_M and r_{max} 79
 6.1.2 Integrated Michaelis-Menten equation 82
 6.1.3 Reversible equilibria 83
 6.1.4 Inhibition
 6.1.4.1 Non-competitive inhibition 91
 6.1.4.2 Competitive inhibition 94
 6.1.4.3 Uncompetitive inhibition 95
 6.1.4.4 Substrate inhibition 97
 6.1.5 Formation of intermediates 98
 6.1.6 Bissubstrate reactions 100
 6.1.7 Multi-substrate reactions 105
 6.1.8 King and Altman method 110
 6.1.9 Importance of K_M and k_{cat} 113

6.2 Parameters Affecting Enzymatic Activity
 6.2.1 pH-dependence 121
 6.2.2 Temperature-dependence 126

6.3 The Kinetic Isotope Effect and Hydrogen Tunneling
 6.3.1 The kinetic isotope effect 129
 6.3.1.1 Kinetic isotope effect and reaction mechanisms 131
 6.3.2 Hydrogen tunnelling 134

7. Mechanisms in Enzymatic Catalysis and Enzyme Models
 7.1 Enzyme-substrate Interactions 142
 7.2 Enzymes and Other Catalysts – The Entropy Effect 150
 7.3 Single Mechanisms with Examples
 7.3.1 Acid-base catalysis 151
 7.3.2 Covalent catalysis 153
 7.3.3 Metal ion catalysis 156
 7.3.3.1 Methylmalonyl-CoA mutase – a cobalamin enzyme 165
 7.4 Metalloenzyme of Biotechnological Relevance
 7.4.1 Hydrogenases 170
 7.4.2 Enzymes of the nitrogen cycle 178
 7.4.3 Dinitrogenoxide reductase 185
 7.4.4 Vanadium and vanadium-containing enzymes 186
 7.4.4.1 Vanadium-nitrogenases 189
 7.4.4.2 Fe-nitrogenases 192
 7.4.4.3 VNase model compounds 193
 7.4.4.4 Vanadium haloperoxidases 196
Contents

8. **Synthesis of Peptide Antibiotics**
8.1 Mechanism of Nonribosomal Peptide Synthesis
8.2 Other Multi-functional Enzymes
8.2.1 Fatty acid synthetases
8.2.2 Polyketide synthetases
8.3 Naturally Occurring Peptide/Polyketide Hybrids
8.4 Application of Nonribosomal Peptide Synthetases
8.5 The Case Mycosubtilin
8.6 Ribosomal Synthesis of Antibiotics

9. **Immobilized Biocatalysts**
9.1 Definition and Characterization
9.2 Reasons for Immobilizing Biocatalyst
9.3 Properties of Carriers for Immobilization
9.4 Different Types of Carrier Materials
9.5 Immobilization Methods
9.5.1 Immobilization by adsorption
9.5.2 Covalent immobilization
9.5.2.1 Optimizing experimental parameters
9.5.3 Immobilization by crosslinking
9.5.4 Entrapment of biocatalysts
9.5.4.1 Sol-gel processes — inorganic polymers
9.5.4.1.1 Silicon-based matrixes
9.5.5 Encapsulation
9.6 Kinetics of Immobilized Biocatalysts
9.6.1 Conformational changes
9.6.2 Partitioning effects
9.6.3 Diffusion limitation
9.7 Improving the Properties of Enzymes by Immobilization
9.8 Carrier-free Immobilizates
9.8.1 Crosslinked enzyme crystals
9.8.1.1 Application of CLECs
9.8.2 Crosslinked enzyme aggregates

10. **Structure, Function, and Application of Enzymes**
10.1 **Hydrolases**
10.1.1 Lipases — general aspects
10.1.1.1 Reaction behavior of lipases
10.1.1.2 Stereoselectivity of lipases
10.1.1.3 Different types of lipases and nomenclature
10.1.1.4 Kinetic resolution
10.1.1.5 The Kazlauskas rules
10.2.2.4 Examples of unusual glycosidases 449
10.2.3 Glycosyltransferases 455
 10.2.3.1 Structural and mechanistic aspects 467
 10.2.3.2 Synthesis of glycoconjugates catalyzed by GTs 474
 10.2.3.3 High-throughput screening for GTs 480
 10.2.3.4 Bidirectional glycosyltransferases 482
10.2.4 Applications of glycoconjugates 492
10.3 Catalysts for Redox Reactions 509
 10.3.1 Oxidoreductases – general aspects 509
 10.3.1.1 Stereochemical aspects 511
 10.3.1.2 Co-factor regeneration 512
 10.3.1.2.1 Electrochemical methods of cofactor regeneration or bypassing 514
 10.3.1.3 Examples of oxidoreductases 522
 10.3.2 Dehydrogenases 525
 10.3.2.1 NAD(P)+-dependent dehydrogenases 525
 10.3.2.2 Flavin-dependent dehydrogenases 527
 10.3.3 Oxygenases 532
 10.3.3.1 Monooxygenases 532
 10.3.3.1.1 Cytochrom P-450 oxygenases 533
 10.3.3.1.2 Aromatic hydroxylases 536
 10.3.3.1.3 Baeyer-Villiger monooxygenases 538
 10.3.3.2 Dioxygenases 559
 10.3.3.2.1 Application of dioxygenases 562
 10.3.3.2.2 Dioxygenases in environmental biotechnology 567
 10.3.3.2.3 Catechol dioxygenases 572
 10.3.3.2.4 Lipoxygenases 577
10.4 Lyases 610
 10.4.1 Aldolases 610
 10.4.1.1 The aldol reaction 610
 10.4.1.2 Aldolases – mechanisms and mimics 612
 10.4.1.3 Aldolases in organic synthesis 622
 10.4.1.3.1 DHAP dependent aldolases 622
 10.4.1.3.2 DHAP – problems and solutions 641
 10.4.1.3.3 Aldolases accepting DHA 645
 10.4.1.3.4 Pyruvate and phosphoenolpyruvate dependent aldolases 647
 10.4.1.3.5 DER aldolases 659
 10.4.1.3.6 Glycine-dependent aldolases 666
 10.4.1.4 Aldolases – environmental aspects 669
10.4.2 Hydroxynitril lyases
 10.4.2.1 Mechanism of hydroxynitrile lyases and structural aspects
 10.4.2.2 Application of hydroxynitrile lyases
 10.4.2.3 Engineering of HNLs
 10.4.2.4 Further modifications of cyanohydrins
 10.4.2.5 Immobilized (R)-oxynitrilases

10.5 Epimerases and Racemases
 10.5.1 Racemases
 10.5.2 Conversion of a racemase into an aldolase
 10.5.3 Industrial application of racemases
 10.5.4 Isomerases

10.6 Transaminases – Catalysts for Amino Acid Synthesis

11. Enzymes in Non-conventional Media
 11.1 Enzymes in Organic Solvents
 11.1.1 Thermal stability of enzymes in organic solvents
 11.1.2 The role of water
 11.1.3 The role of solvent properties
 11.1.4 pH-memory in organic solvents
 11.1.5 (Low) enzymatic activity in organic solvents
 11.1.6 Structure of enzymes in organic solvents
 11.1.7 Improving enzymatic activity in organic solvents
 11.2 Other Non-conventional Media
 11.2.1 Supercritical fluids
 11.2.2 Ionic liquids
 11.2.2.1 Ionic liquids in enzyme catalysis
 11.2.3 Combination of ILs and scCO₂

12. Methods to Improve Biocatalysts
 12.1 Protein Design and Related Aspects
 12.2 Fundamentals of Genetic Engineering
 12.2.1 Transcription
 12.2.2 Translation
 12.2.3 Transformation and expression
 12.2.4 Recombinant techniques
 12.2.4.1 The PCR reaction
 12.2.4.2 Restriction enzymes and DNA ligases
 12.3 Engineering of New Proteins
 12.4 Evolutionary Methods in Biocatalysis
 12.4.1 Generating diversity
 12.4.1.1 Saturation mutagenesis
Contents

12.4.1.2 Error-prone PCR 808
12.4.1.3 Gen-shuffling, recombining methods 811
12.4.2 Recent developments 817
 12.4.2.1 Substrate acceptance 817
 12.4.2.2 Improvement of enantioselectivity 819
 12.4.2.3 Thermal stability 824

13. Metabolic Pathway Engineering 830
 13.1 Metabolic Engineering in Oligosaccharide Synthesis 838
 13.2 Further Applications of Pathway Engineering 843
 13.3 Novel Carotenoids 850
 13.4 Combining Transketolase and Transaminase Activity 854

14. Catalytic Antibodies 857
 14.1 Antibodies 860
 14.2 Some Historical Aspects 863
 14.3 Cleavage of C–O and C–N Bonds 866
 14.4 Further Examples 870
 14.5 Catalysis of Unfavored Reactions 887
 14.6 Catalytic Antibodies in Medicine 889
 14.6.1 Catalytic antibodies and detoxification 889
 14.6.2 Activation of prodrugs by antibodies 893
 14.7 Evolution of Binding Energy and Catalysis 897

15. Nucleic Acids as Catalysts 908
 15.1 Nucleic Acid Catalysts and Protein Enzymes 914
 15.2 Examples of the Mechanism of RNA Catalysis 920
 15.3 Characterization of a Ribozyme 930
 15.4 Selection of Catalytic Nucleic Acids 940
 15.5 Expanding the Scope of Catalysis by Nucleic Acids 945
 15.6 Examples of Catalytic RNA and DNA 948
 15.6.1 RNA-based catalysts – ribozymes 948
 15.6.2 DNA-based catalysts 960

16. Use of Enzymes in Industry 968
 16.1 Industrial Biotechnology in Numbers 968
 16.2 Enzymes for Starch Conversion 972
 16.3 Milk Processing 977
 16.4 Cheesemaking 978
 16.5 Enzymes and Beer 980
 16.6 Bread Processing 982
 16.7 Application in Fruit Juice Production 986
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8 The Detergent Industry</td>
<td>987</td>
</tr>
<tr>
<td>16.9 Textile Applications</td>
<td>988</td>
</tr>
<tr>
<td>16.10 Pulp and Paper Processing</td>
<td>990</td>
</tr>
<tr>
<td>17. White Biotechnology</td>
<td>993</td>
</tr>
<tr>
<td>Outlook</td>
<td>1008</td>
</tr>
</tbody>
</table>

List of Abbreviations | 1011

Index | 1015