TABLE OF CONTENTS

FOREWORD i

AUTHOR INDEX ix

SESSION 1: LIMITED-AREA AND MESOSCALE MODELING

1.3 An evaluation of the synoptic- and mesoscale predictability of the meso-scale atmospheric simulation system (MASS 2.0) model. Stephen E. Koch, William C. Skillman, Paul J. Kocin, and Peter J. Wetzel, Goddard Lab. for Atmospheric Sciences (GLAS)/NASA, Greenbelt; and Keith F. Brill, General Software Corp., Landover, Md. 16

1.5 Automated objective analysis and prediction of mesoscale convective systems. David A. Matthews, Bureau of Reclamation, Denver, Colo.; and Leon Osborne, Univ. of North Dakota, Grand Forks, N.Dak. 31

1.6 Numerical simulations of a case of explosive marine cyclogenesis. Richard A. Anthes and Ying-Hwa Kuo, NCAR, Boulder, Colo.; and John R. Gyakum, Univ. of Illinois, Urbana, Ill. 37

1.8 A sequential analysis-update system for regional analysis at NMC. G. J. DiMego and R. V. Jones, National Meteorological Center (NMC)/NOAA, Washington, D.C. **

1.9 Numerical weather prediction experiments over Indian region with barotropic models. D. V. Bhaskar Rao and S. A. Hakeem, Andhra Univ., Waltair, India. 53

1.10 Fine mesh numerical weather prediction over France. R. Juvanon du Vachat, A. Craplet, Y. Durand, A. Joly, H. L. Pham, and D. Rousseau, Etablissement d'Etudes et de Recherches Meteorologiques (EERM), Boulogne, France. 57

SESSION 2: VERIFICATION METHODS, PROBLEMS WITH NWP PRODUCTS, AND FUTURE DEVELOPMENTS
Chairman: Harry R. Glahn, Techniques Development Lab. (TDL)/NOAA, Silver Spring, Md.

2.1 Verification statistics of the Navy Operational Global Atmospheric Prediction System tailored for the field forecaster. Patrick A. Harr, L. Robin Brody, and Ted L. Tsui, Naval Environmental Prediction Research Facility (NEPRF), Monterey, Calif. 62

**Manuscript not available; if received in time, it will appear in back of book.

2.3 Marine fog/stratus forecasting with a 3-D boundary layer model. Paul M. Tag, NEPRF, Monterey, Calif.

2.4 Forecast intercomparison of several global models using the FGGE data base. D. F. Baumhefner and T. W. Bettge, NCAR, Boulder, Colo.

2.5 The objective verification of large-scale numerical weather predictions. T. W. Bettge and D. F. Baumhefner, NCAR, Boulder, Colo.

2.6 Objective verification of tropical forecasts. Steven W. Payne, NEPRF, Monterey, Calif.

2.7 Evaluation of wind forecasts from the Local AFOS MOS Program (LAMP). H. R. Glahn, TDL/NOAA, Silver Spring, Md.

2.8 Analysis of errors in numerical prediction of extratropical cyclogenesis. S. Dennstaedt and M. S. Tracton, NMC/NOAA, Washington, D.C.

2.10 The advanced weather analysis and prediction system. James P. Koermer, Air Weather Service (AWS), Scott AFB, Ill.

2.11 NMC numerical guidance and the Class VI computer. John A. Brown, Jr., NMC/NOAA, Washington, D.C.

SESSION 3: GLOBAL SCALE MODELING

Chairman: Alan I. Weinstein, NEPRF, Monterey, Calif.

3.1 An assessment of GFDL's continuous data assimilation system used for processing FGGE data. William F. Stern and Jeffrey J. Ploshay, Geophysical Fluid Dynamics Lab. (GFDL)/NOAA, Princeton, N.J.

3.2 The numerical weather prediction model of the Meteorological Office. S. J. Foreman, Meteorological Office, Bracknell, U.K.

3.3 On the importance of the 6-hour update in the NMC global data assimilation system. John H. Ward, NMC/NOAA, Washington, D.C.

3.4 The initial evaluation of a 9-layer, 20-wave global spectral model as the first guess for AFGWC's future high-resolution analysis system. F. P. Lewis, T. C. Tarbell, W. F. Miller, and H. D. McInnis, AFGWC, Offutt AFB, Nebr.

3.5 Diagnostic studies of an NWP model physics. Thomas E. Rosmond, NEPRF, Monterey, Calif.

3.6 The effect of rotational and gravity modes in forced global models. J. N. Paegle and J. Paegle, Univ. of Utah, Salt Lake City, Utah; Yan Hong, Lanzhou Institute of Plateau Atmospheric Physics, Peoples' Republic of China; and Zhen Zhao, Central Meteorological Bureau, Peking, Peoples' Republic of China.

3.7 The NMC global data assimilation system. Lauren L. Morone and Clifford H. Dey, NMC/NOAA, Washington, D.C.

3.8 Variational global analysis of satellite temperature soundings. M. Halem and E. Kalnay, GLAS/NASA, Greenbelt, Md.

*Manuscript not available.

**Manuscript not available; if received in time, it will appear in back of book.
3.9 Effect of high-latitude filtering on NWP skill. Eugenia Kalnay, Lawrence L. Tackacs, and Ross N. Hoffman, GLAS/NASA, Greenbelt, Md.

SESSION 4: NUMERICAL ANALYSIS AND INITIALIZATION TECHNIQUES--I

Chairman: Randolph W. Ashby, AFGWC, Offutt AFB, Nebr.

4.1 The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive equation model. Michael J. Pechnick, General Software Corp., Landover; and Daniel Keyser, GLAS/NASA, Greenbelt, Md.

4.2 On the vertical modal structures of large-scale atmospheric motions. A. Kasahara, NCAR, Boulder, Colo.

4.3 Objective analysis accuracies of statistical interpolation and successive correction schemes. R. S. Seaman, Australian Numerical Meteorology Research Centre, Melbourne, Australia.

4.4 Normal mode initialization of the RPN finite element model. Gillis Verner and Robert Benoit, Division de Recherche en Prevision Numerique, Dorval, Que., Canada.

SESSION 5: NUMERICAL ANALYSIS AND INITIALIZATION TECHNIQUES--II

Chairman: Akira Kasahara, NCAR, Boulder, Colo.

5.2 Comparison of three analysis techniques for mesoscale nowcasting. R. Gary Rasmussen and Thomas W. Schlatter, PROFS/NOAA, Boulder, Colo.

5.3 A comparison of various initialization schemes. R. M. Errico, NCAR, Boulder, Colo.

5.4 A simple, fast and accurate procedure for initialization of a limited-area model. Frederick H. Carr, Dan J. Rusk, and Mohan Ramamurthy, Univ. of Oklahoma, Norman, Okla.

5.7 Objective analyses of surface wind, temperature, and humidity by optimum interpolation methods. T. W. Yu, NMC/NOAA, Washington, D.C.

*Manuscript not available; if received in time, it will appear in back of book.
SESSION 6: IMPACT OF DATA SOURCES ON NUMERICAL WEATHER ANALYSIS AND PREDICTION

Chairman: Milton Halem, GLAS/NASA, Greenbelt, Md.

6.3 Objective verification analysis for impact of satellite sounding data on IMS model forecasts. J. T. Chang, Systems and Applied Sciences Corp., Hyattsville, Md.

6.5 A case study of the impact of satellite temperature soundings on an analysis/forecast system. Harold J. Brodrick, NESDIS/NOAA, Washington, D.C.

6.6 Impact of aircraft wind data on ECMWF analyses and forecasts during the FGGE period, 8-19 November 1979. A. P. M. Baede, Royal Netherlands Meteorological Institute, De Bilt, Netherlands; and S. Uppala and P. Källberg, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, U.K.

6.9 Impact of NOAA 6/TIROS N data on 5 layer PE model forecast over Atlantic Ocean. L. M. Druyan, Bar Ilan Univ., Ramat Gan; and Z. Alperson and T. Ben-Amram, Israel Meteorological Service, Bet Dagan; and J. H. Joseph, Tel Aviv Univ., Israel.

SESSION 7: OPERATIONAL NUMERICAL MODELING

Chairman: John A. Brown, Jr., NMC/NOAA, Washington, D.C.

7.2 Improvements to NORAPS: The Navy Operational Regional Atmospheric Prediction System. R. M. Hodur, NEPRF, Monterey, Calif.

7.3 Statistical corrections of the NMC barotropic-mesh model. J. E. Schemm and A. J. Faller, Univ. of Maryland, College Park, Md.

7.4 Withdrawn.

*Manuscript not available.
**Manuscript not available; if received in time, it will appear in back of book.
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>A preliminary evaluation of the Navy operational global atmospheric</td>
<td>Raymond F. Toll, Jr., Fleet Numerical Oceanography Center, Monterey, Calif.</td>
</tr>
<tr>
<td></td>
<td>prediction system.</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Performance characteristics of an operational second order closure</td>
<td>William T. Thompson and Stephen D. Burk, NEPRF, Monterey, Calif.</td>
</tr>
<tr>
<td></td>
<td>boundary layer forecast model.</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>An evaluation of the sea level pressure and moisture models of LAMP.</td>
<td>David Unger, TDL/NOAA, Silver Spring, Md.</td>
</tr>
<tr>
<td>7.8</td>
<td>On isolating the factors relevant to successful numerical weather</td>
<td>M. S. Tracton, NMC/NOAA, Washington, D.C.</td>
</tr>
<tr>
<td></td>
<td>prediction.</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>The Air Force Global Weather Central's high resolution analysis</td>
<td>Timothy L. Wilfong, Fred P. Lewis, James G. Stobie, Edward L. Carr, Larry G. Renninger,</td>
</tr>
<tr>
<td></td>
<td>system.</td>
<td>Allan M. Weiner, Michael D. Lewis, and Jason P. Tueil, AFGWC, Offutt AFB, Nebr.</td>
</tr>
<tr>
<td>7.10</td>
<td>The Meteorological Office operational global data assimilation and</td>
<td>R. S. Bell, Meteorological Office, Bracknell, England.</td>
</tr>
<tr>
<td></td>
<td>forecast system.</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 8: PHYSICAL MODELING AND PARAMETERIZATION—I

Chairman: Robert E. Tuleya, GFDL/NOAA, Princeton, N.J.

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>A nonhydrostatic, axisymmetric model of hurricane dynamics with</td>
<td>Hugh E. Willoughby, Jin Han-Liang, Stephen J. Lord, and Jacqueline M. Piotrowicz, Atlantic</td>
</tr>
<tr>
<td></td>
<td>explicit convection and ice microphysics.</td>
<td>Oceanographic and Marine Labs./NOAA, Coral Gables, Fla.</td>
</tr>
<tr>
<td>8.3</td>
<td>Introduction of a finite-element boundary layer model into a regional</td>
<td>Robert Benoit and Jean Cote, Division de Recherche en Prevision Numerique, Dorval, Que.,</td>
</tr>
<tr>
<td></td>
<td>forecasting model.</td>
<td>Canada.</td>
</tr>
<tr>
<td></td>
<td>severe storm environment—Numerical simulations of the SESAME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV (9-10 May 1979) case.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>associated with coastal frontogenesis and cold-air damming.</td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>Horizontal components of the frictional force in the sigma-coordinate</td>
<td>P. Alpert, Tel Aviv Univ.; and J. Neumann, Hebrew Univ. of Jerusalem, Israel.</td>
</tr>
<tr>
<td></td>
<td>system for mesometeorological flow models.</td>
<td></td>
</tr>
</tbody>
</table>

*Manuscript not available.

**Manuscript not available; if received in time, it will appear in back of book.
SESSION 9: PHYSICAL MODELING AND PARAMETERIZATION--II

Chairman: Arthur Douglas, Creighton Univ., Omaha, Nebr.

9.1 Sensitivity of the planetary boundary layer to changes in soil moisture availability. Some numerical experiments from SESAME IV. John M. Lanicci and Toby N. Carlson, Pennsylvania State Univ., University Park, Pa. 313

9.2 Nested grid modeling of a lake-effect rainstorm. Robert J. Ballentine, Univ. of Wisconsin, Milwaukee, Wis. 320

9.4 An economical approach to inclusion of the thermodynamic effects of deep cumulus convection in meso-alpha scale models. John Molinari, State Univ. of New York at Albany, N.Y. 325

9.5 A boundary-layer scale model of mountain upslope flow. Robert M. Banta, Colorado State Univ., Ft. Collins, Colo. 328

9.6 On numerical solution of vertical structure functions in normal mode method. Y. K. Sasaki and L. F. Chang, Univ. of Oklahoma, Norman, Okla. 336

9.7 Dynamics of buoyancy waves in the atmosphere. A. M. Selvam, A. S. R. Murty, and B. V. R. Murty, Indian Institute of Tropical Meteorology, Poona, India. **

SESSION 10: RESEARCH NUMERICAL MODELING--I

Chairman: Yoshi K. Sasaki, Univ. of Oklahoma, Norman, Okla.

10.1 A one-level mesoscale model for complex terrain. David Dempsey and Clifford Mass, Univ. of Washington, Seattle, Wash. 343

10.2 A triple correlation boundary layer model using the Wiener-Hermite expansion to solve the closure problem. S. L. Csanady and Y. S. Kim, Atmospheric Environment Service, Downsview, Ont., Canada. 348

10.3 Application of the semi-Lagrangian scheme to the moisture equation in a regional forecast model. Hal Ritchie, Division de Recherche en Prevision Numerique, Dorval, Que., Canada. 357

10.4 The accuracy of a finite-element vertical discretization scheme for primitive equation models: Comparison with a finite-difference scheme. Jean Cote, Michel Beland, and Andrew Staniforth, Division de Recherche en Prevision Numerique, Dorval, Que., Canada. 362

10.5 Coupled ocean-atmospheric modeling for 3-15 day numerical weather prediction--A workshop report. Alan I. Weinstein and Thomas E. Rosmond, NERF, Monterey, Calif. 371

10.7 Studies of Arakawa's energy-conserving vertical finite-differencing scheme. Samuel Y. K. Yee, AFGL, Hanscom AFB, Mass. 375

10.8 Computational modes in numerical weather prediction. F. Baer and P. J. Sheu, Univ. of Maryland, College Park, Md. 379

**Manuscript not available; if received in time, it will appear in back of book.
SESSION 11: RESEARCH NUMERICAL MODELING--II

Chairman: Ferdinand Baer, Univ. of Maryland, College Park, Md.

11.1 Representation of the tropopause using sigma coordinates. M. A. Rennick and R. T. Williams, Naval Postgraduate School, Monterey, Calif.

11.2 Numerical simulation of atmospheric flow on variable grids using the Galerkin finite element method. Donald E. Hinsman, NEPRF, Monterey, Calif.

11.3 Withdrawn.

11.5 On error detection in the dynamics part of primitive equation models. Winston C. Chao, Lab. for Planetary Atmospheres, GSFC/NASA, Greenbelt, Md.

11.6 A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone. Patricia M. Dare and Phillip J. Smith, Purdue Univ., W. Lafayette, Ind. **

11.8 Experiments in medium-range forecasting: Sensitivity to model resolution and vertical extent. C. R. Mechoso, M. J. Suarez, K. Yamazaki, J. A. Spahr, and A. Arakawa, Univ. of California, Los Angeles, Calif.

**Manuscript not available; if received in time, it will appear in back of book.