CONTENTS

Preface ix

1. **ORDINARY DIFFERENTIAL EQUATIONS** 1

 Introduction 1

 1.1 Ordinary Differential Equation 1

 1.1.1 Linear Ordinary Differential Equation 2

 1.2 Linear Dependence and Independence of Functions 3

 1.3 Solutions of Linear Equations 5

 1.3.1 Linear Differential Equation of First Order 6

 1.3.2 Linear Differential Equation with Constant Coefficients 7

 1.3.3 The Euler Equidimensional Linear Differential Equation 11

 1.3.4 Determination of Constants from Initial Conditions 14

 1.4 Nonlinear First Order Ordinary Differential Equations 15

 1.4.1 Separable Equation 15

 1.4.2 Exact Differential Equation 17

 1.4.3 Homogeneous Differential Equation 19

 Exercises 21

2. **PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER** 24

 Introduction 24

 2.1 First Order Partial Differential Equations of Various Types 24

 2.2 First Order Semi-linear Equation in Two Independent Variables 25

 2.2.1 The Cauchy Problem 27

 2.2.2 Solution Method for the First Order Semi-linear PDE 27

 Exercises 34

3. **PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER** 36

 Introduction 36

 3.1 Derivation of Canonical Forms 37

 3.2 Hyperbolic Equations 38

 3.3 Parabolic Equations 41

 3.4 Elliptic Equations 45

 3.5 Equations with Constant Coefficients 49

 Exercises 50
4. BASIC CONCEPTS IN APPROXIMATE SOLUTION TO THE BOUNDARY VALUE PROBLEMS 53

Introduction 53
4.1 Space of Functions 53
4.1.1 Inner Product 53
4.1.2 Orthogonal Functions 55
4.1.3 Norm and Distance or Metric 55
4.1.4 Schwarz Inequality and Triangle Inequality 56
4.2 Projection of a Function onto an Orthogonal Set 57
4.3 Complete Orthonormal Systems and Parseval’s Theorem 62
4.3.1 Gram-Schmidt Orthogonalisation 62
4.3.2 Orthonormal Set 65
4.3.3 Completeness and the Mean Square Convergence 67
Exercises 69

5. FOURIER SERIES 70

Introduction 70
5.1 Series of Trigonometric Functions 70
5.2 Convergence of Fourier Series 72
5.2.1 Piecewise Continuous Function 72
5.2.2 Piecewise Smooth Function 72
5.3 Evaluation of Fourier Coefficients 75
5.3.1 Even and Odd Functions 75
5.3.2 Even and Odd Extensions of a Function 79
5.4 Uniform Convergence of a Fourier Series 82
5.5 Application of Parseval’s Theorem for Estimate of the Mean Square Error 85
Exercises 89

6. HYPERBOLIC EQUATION (WAVE EQUATION) 90

Introduction 90
6.1 Wave Equation in One Dimension 90
6.1.1 Solution of the Wave Equation in One Dimension 91
6.2 D’Alembert’s Solution Method 93
6.3 Semi-infinite String 97
6.4 Finite String 100
6.4.1 Method of Separation of Variables 101
6.4.2 Inhomogeneous Wave Equation 110
6.5 Green’s Function for the Wave Equation 114
6.6 Wave Equation in Two and Three Dimensions and Curved Geometry 116
7. **ELLiptic Equation (Potential Equation)**

 Introduction
 7.1 Harmonic Functions in Two Dimensions and Complex Variables
 7.2 Green’s Identities
 7.3 Properties of Harmonic Functions in Bounded Regions
 7.4 Solution of the Laplace’s Equation by the Method of Separation of Variables
 7.5 Laplace’s Equation in Cylindrical Geometry
 7.6 Poisson Equation

8. **Parabolic Equation (Heat Equation)**

 Introduction
 8.1 The Boundary Conditions
 8.2 The Maximum Principle for the Parabolic Equation and Consequences
 8.3 Solution of the Heat Equation by the Method of Separation of Variables
 8.4 General First Boundary Value Problem
 8.5 Heat Equation in Curved Geometry

9. **Fourier Transforms**

 Introduction
 9.1 Fourier Series to Fourier Integral
9.2 Properties of Fourier Transform
- 9.2.1 Fourier Sine and Cosine Transforms

9.3 Solution of the Diffusion Equation in Infinite and Semi-infinite Media
- 9.3.1 Heat Equation in One Dimensional Infinite Medium
- 9.3.2 Green’s Function for One Dimensional Infinite Medium Heat Equation
- 9.3.3 Heat Equation in One Dimensional Semi-infinite Medium

9.4 Solution of the Wave Equation in Infinite Medium
- 9.4.1 General Solution of the Wave Equation
- 9.4.2 D’Alembert’s Solution of the Wave Equation

9.5 Laplace’s Equation in Semi-infinite Medium

9.6 Fourier Transform in More than One Variable

9.7 Dirac Delta Function

9.8 Laplace Transform and Other Transform Pairs

Exercises

10. VARIATIONAL METHOD AND OTHER APPROXIMATE METHODS

Introduction

10.1 Basic Elements of the Calculus of Variations
- 10.1.1 Problem of the Calculus of Variations

10.2 Construction of the Variational Principle
- 10.2.1 Adjoint Operator and Adjoint Function
- 10.2.2 Dual Functional and the Variational Principle
- 10.2.3 Trial Functions and the Reduced Equations

10.3 Methods of Weighted Residuals
- 10.3.1 Variational and Galerkin Methods
- 10.3.2 Collocation Method
- 10.3.3 Method of Least Squares
- 10.3.4 Subdomain Method
- 10.3.5 Moments Method

Exercises

11. APPLICATIONS OF APPROXIMATE METHODS TO BOUNDARY VALUE PROBLEMS

Introduction

11.1 Heat Transfer Problem

11.2 Problem in Theory of Elasticity

11.3 Problem in Neutron Transport

11.4 Eigenvalue Problems

11.5 Vibrating Membrane Problem

Exercises