Table of Contents

1 Future Developments & Trends in TPO
Mark Murphy, Tom Shafer, Michael Shoemaker
Dow Automotive

13 Thermo Formable Bright Film for TPO applications
Quan Song, Ph.D.
Technology Director, Soliant, LLC

22 A new polymeric additive for primerless paintable bumper fascia
Justin Jin, Seongki Park, Sehyun Cho
Polymersnet Co., Ltd.

26 Impact Behavior of Clay – TPO Nanocomposites
Patricia C. Tibbenham

31 Materials Research & Advanced Engineering, Ford
Characterizing the Impact Response of Exterior TPOs
Lebzy González
Materials Research & Advanced Engineering, Ford

36 Thermoplastic Polyolefins (TPO) for Slush Molding of Interior Skins: Materials and Processing Requirements
Thomas S. Ellis, Delphi Research Labs.
Norm Kakarala and Sandip Patel, Delphi Thermal and Interiors

59 Development of a softer molded in color/Paintable RTPO for the Driver Airbag Cover Application.
Nadeem Bokhari, Ph.D., Autoliv North America
Sanjay Patel, Huntsman International LLC

70 Tiger Stripe Control in Automotive TPOs
Jason Brodil – The Dow Chemical Company
Kalyan Sehanobish – The Dow Chemical Company

77 Characterization and Modeling of TPO Polymer Systems for Interior Energy Management Applications
Scott Burr and Luis Lorenzo
Dow Automotive, The Dow Chemical Company
87 Numerical Simulation of the Thermoforming of an Automotive Dashboard Skin
Hossam Metwally, Fluent Inc., Kévin Portha, Université Paul Verlaine, Sébastien Szulga, Université Jean Monnet de Saint Etienne, Antoine Dozolme, Thierry Marchal, Fluent Benelux

92 Low Compression Set and Soft Low Friction TPVs for Automotive Sealing Applications
Yuichi Ito
Functional Polymeric Materials Laboratory, Mitsui Chemicals, Inc.

98 Role of TPOs in a Shifting Auto Interiors Value and Supply Chain
Robert Eller, Robert Eller Associates, Inc.

108 Automotive Interior Soft Trim: Skins, Foams, Coated Fabrics, Textiles, and Acoustic Barriers
Robert Eller, Robert Eller Associates, Inc.

116 Modifying Thermoplastic Elastomers’ Melt Properties To Facilitate Difficult Processes
Bryan Kazmer, VP Technology, Vi-Chem Corp.

119 Gloss Control of Thermoformable TPOs Via Formulation and Process
Kim L. Walton, Laura B. Weaver, Doug P. Waszeciak, E. Scott Gisler

143 Soft-Touch Polyolefins for Automotive Interiors
Charles G. Reid, S. Bafna, K. Cai, H. Pham,
Solvay Engineered Polymers

178 The Development and Expansion of TPO Nanocomposite Materials in Automotive Applications
William R. Rodgers, Paula D. Fasulo, General Motors R&D Center Materials and Processes Laboratory
Michael J. Balow, Carole L. Bolthouse, Basell Advanced Polyolefins

189 Polyolefin Nanocomposites in TPOs
David Jarus, Ph.D., Jeff DeWerth, PolyOne Corporation
Jerry Qian, Ph.D., Nanocor Inc.
195 A Master Batch Approach to Create Polypropylene / Organoclay Nanocomposites
M. K. Dolgovskij, C. W. Macosko, Department of Chemical Engineering and Materials Science, University of Minnesota
D. F. Eckel, P. D. Fasulo, and W. R. Rodgers, General Motors Research and Development Center

201 Forte Nanocomposites
Noble Polymers

235 Novel Polymer nanocomposites prepared through supercritical CO2 processing: Structure and mechanical properties
Steven E. Horsch, Gulay K. Serhatkulu, Esin Gulari, Rangaramanujam M. Kannan
Department of Chemical Engineering and Materials Science, Wayne State University

238 Hierarchical Structure, Properties, and Scratch Resistance of Melt Intercalated Polymer-Clay Nanocomposites
R. Rao, A. Muduliar, Q. Yuan, R.D.K. Misra
Center for Structural and Functional Materials, University of Louisiana at Lafayette,
Department of Chemical Engineering, University of Louisiana at Lafayette. G. Zollos, D. Jarus, PolyOne Corporation

256 Expanding the Product Portfolio of Ethylene Elastomers
Jim Hemphill, Morgan Hughes – Dow Chemical Company
Avi Gadkari – Dupont Performance Elastomers

272 Material Requirements for Inflatable Curtain (I.C.) ramps/clips and Passenger Airbag cover applications
Nadeem Bokhari, Ph.D., Autoliv North America
Sanjay Patel, Huntsman International LLC

284 Effects of Nucleating Agents On TPO Performance
Changlai Yang, James A. Browne
Basell Polyolefin North American, Inc.

Edmund Lau - Solvay Engineered Polymers
G.T. Lim, M. Wong, B. Browning, A. Moyse, H.-J. Sue - Scratch Behavior of Polymers
Consortium Dept. of Mechanical Engineering
Texas A&M University
305 Scratch & Mar Resistance: Findings for Talc Reinforced Polyolefins
J. A. Elverum, Luzenac

310 An Enhanced Mar-Resistant Engineered Polyolefin for Paint Replacement in Automotive Exteriors
Sudhir Bafna, Mitesh Shah, Dave Edge, Matt Binkinz, Kevin Cai
Solvay Engineered Polymers

352 Effect of Erucamide on the Development of Surface Tack in Automotive Scratch and Mar Systems
Peter Solera, Ashutosh H. Sharma
Plastic Additives Ciba Specialty Chemicals Corporation

368 New Developments in a Scratch Resistance Additive for Automotive Polyolefins
Ashutosh Sharma, Peter Solera, Gregor Huber, Sarah Kaspers
Ciba Specialty Chemicals

390 Effect of Orientation on Vibration Weld Strength of TPO
Chung-Yuan Wu, Visteon Corporation
Phil J. Bates, Royal Military College of Canada
Steve X. Y. Dai, Centre for Automotive Materials and Manufacturing

397 "Variables In Flame Treatment And There Effects On Adhesion And Transfer Efficiency Of Automotive Paint Systems"
Jamie Brynolf, Russell Brynolf
FTS Technologies

411 Recycling Exterior Grade Painted TPO's
Robert Egbers
American Commodities, Incorporated

422 Scratch Behavior of Anisotropic Polypropylene Surfaces
R. Browning, G. Lim, H. Jiang and H.-J. Sue
Polymer Technology Center
Department of Mechanical Engineering, Texas A&M University

431 Twin Screw Extrusion for Long Fiber Reinforcement of TPO's
Charlie Martin - Leistritz