TABLE OF CONTENTS

FOREWORD i

AUTHOR INDEX xi

SESSION 1: DIFFUSION AND PLUME RISE IN THE BOUNDARY LAYER OVER MODERATELY FLAT TERRAIN

1.1 MODEL TO ESTIMATE DISPERSION OF ELEVATED RELEASES INTO A SHEAR-DOMINATED BOUNDARY LAYER. A. Venkatram, Environmental Research and Technology, Inc. (ERT), Newbury Park, Calif. and R. Paine, ERT, Concord, Mass.

1.2 UPSTREAM DIFFUSION IN THE CONVECTIVE BOUNDARY LAYER WITH WEAK OR ZERO MEAN WIND. J. W. Deardorff, Oregon State Univ., Corvallis, Ore.

1.3 TURBULENCE PARAMETERS IMPACTING DISPERSION IN AN URBAN CONVECTIVE BOUNDARY LAYER. James M. Godowitch and Jason K. S. Ching, Environmental Protection Agency (EPA), Research Triangle Pk., N.C.

1.4 POLLUTION MODELING IN THE CONVECTIVE LAYER. Wen-yih Sun and Chiao-zen Chang, Purdue Univ., W. Lafayette, Ind.

1.5 AN INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS. J. M. Wilczak, Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colo. and M. S. Phillips, National Oceanic and Atmospheric Administration (NOAA)/Environmental Research Lab. (ERL), Boulder, Colo.

1.7 LABORATORY MODELING OF BUOYANT STACK EMISSIONS IN THE CONVECTIVE BOUNDARY LAYER. G. E. Willis and N. Hukari, Oregon State Univ., Corvallis, Ore.

1.8 PLUME RISE AND DISPERSION: AN EVALUATION OF SOME REGULATORY MODELS. B. Henderson-Sellers and S. E. Allen, Univ. of Salford, U.K.

1.9 Paper Withdrawn.

SESSION P1: FIRST POSTER SESSION (See GENERAL INFORMATION for details)

P1.1 PROPAGATION OF MEASUREMENT UNCERTAINTIES IN GAUSSIAN PLUME MODELS: AN APPLICATION TO EXPERIMENTAL DATA. D. L. Freeman, N. R. Robinson, J. G. Watson, R. T. Egami, Desert Research Institute, Reno, Nev.

P1.2 METEOROLOGICAL NETWORK DESIGN FOR MEASURING AIR POLLUTION. Francis M. Fujioka, Pacific Southwest Forest & Range Experiment Station, Riverside, Calif.

*Manuscript not available; if received in time, it will appear at back of book.
PI 4 THERMAL INFLUENCE OF A LARGE COAL PILE ON A NEARBY METEOROLOGICAL TOWER. Howard W. Balentine, Hugh J. Williamson, and Jana I. Steinmetz, Radian Corp., Austin, Tex.

PI 7 Paper Withdrawn.

PI 9 Paper Withdrawn.

SESSION 2: EVALUATION OF MODELS FOR USE IN MODERATELY FLAT TERRAIN
Chairpersons: Carmen Nappo, ATDD/NOAA, Oak Ridge, Tenn. and Ronald Stoner, NUS Corp., Rockville, Md.

2.1 EPA'S MODEL EVALUATION PROGRAM. Joseph A. Tikvart, William M. Cox, EPA, Research Triangle Pk., N.C.

2.2 AN OPERATIONAL EVALUATION OF INDUSTRIAL SOURCE COMPLEX MODEL. Ramesh V. Godbole and Gary J. Naperkoski, Potomac Electric Power Co., Washington, D.C.

2.4 COMPARISON OF OBSERVED AND PREDICTED AIR CONCENTRATIONS DOWNWIND OF A NUCLEAR POWER FACILITY. David E. Fields, Charles W. Miller, and Metin Yildiran, Oak Ridge National Lab., Oak Ridge, Tenn.

2.R CHARACTERIZATION OF DISPERSION COEFFICIENTS FROM ON-SITE TURBULENCE MEASUREMENTS. Fred J. Starheim, Jeffrey D. Shutrump, and Morgan D. Jones, Ohio Edison Co., Akron, Ohio (Reserve Paper)

SESSION 3: ON THE UNCERTAINTIES OF MODEL CONCENTRATION ESTIMATES

3.1 EVALUATING THE EFFECTS ON CONCENTRATION ESTIMATES OF TECHNICAL CHANGES TO REGULATORY AIR QUALITY MODELS. Russell F. Lee, James L. Dicke, Dean A. Wilson, Joseph A. Tikvart, EPA, Research Triangle Pk. N.C.

3.2 AN ALTERNATIVE STABILITY CLASSIFICATION SCHEME FOR AIR QUALITY MODELING. E. Koo, W. L. Chang and B. Y. Lee, Royal Observatory, Kowloon, Hong Kong

3.3 CLIMATOLOGICAL VARIABILITY IN MAXIMUM CONCENTRATIONS. William B. Petersen and John S. Irwin, EPA, Research Triangle Pk., N.C.

*Manuscript not available; if received in time, it will appear at back of book.

3.5 PROGRESS TOWARDS A NEW TALL STACK DIFFUSION MODEL. Steven R. Hanna and Bruce A. Egan, ERT, Concord, Mass. and Jeffrey C. Weil, Martin Marietta Corp., Baltimore, Md.

SESSION J1: TRANSPORT AND DIFFUSION IN COMPLEX TERRAIN -- I

J1.1 WORKSHOP ON DISPERSION IN COMPLEX TERRAIN - SUMMARY. Bruce A. Egan, Environmental Research and Technology, Inc. (ERT), Concord, Mass.

J1.2 ATMOSPHERIC TRACER EXPERIMENTS IN A DEEP NARROW VALLEY. C. David Whiteman, Battelle Pacific Northwest Labs. (Battelle NW), Richland, Wash., Alan H. Huber, EPA, Research Triangle Pk., N.C., Richard W. Fisher, EPA, Denver, Colo., and Bernard D. Zak, Sandia National Lab., Albuquerque, N.M.

J1.3 USING INFORMATION FROM METEOROLOGICAL TOWERS IN COMPLEX TERRAIN. D. S. Wratt, M. G. Hadfield, L. F. Homes and P. Isaac, New Zealand Meteorological Service, Wellington, New Zealand

J1.4 THE DIURNAL VARIATION OF WIND SPEED AND DIRECTION IN A PRONOUNCED RIVER VALLEY. Robert J. Goodwin and Norris A. Nielsen, Tennessee Valley Authority (TVA), Muscle Shoals, Ala.

J1.5 AN ANALYSIS OF ALTERNATIVES FOR MODELING IN ELEVATED TERRAIN LESS THAN STACK HEIGHT. Dean A. Wilson, Joseph A. Tikvart, EPA, Research Triangle Pk., N.C.

J1.6 OPERATIONAL EVALUATION OF EIGHT COMPLEX TERRAIN MODELS FOR POTENTIAL USE IN REGULATORY APPLICATIONS. David J. Wackter and Richard J. Londergan, TRC Environmental Consultants, Inc., E. Hartford, Conn.

J1.9 A MODEL FOR ASYMMETRICAL PLUME GROWTH AND DISPERSION IN COMPLEX TERRAIN. C. Reed Hodgin, Rockwell International, Golden, Colo.

SESSION J2: TRANSPORT AND DIFFUSION IN COMPLEX TERRAIN

J2.1 A FIELD INVESTIGATION OF THE DISPERSION IN A VALLEY IN GREENLAND. Sven-Erik Gryning, Riso National Lab., Roskilde, Denmark; Erik Lyck, National Agency of Environmental Protection, Roskilde, Denmark; Larry Mahrt, Oregon State Univ., Corvallis, Ore.; and Soren Larsen, Naval Postgraduate School, Monterey, Calif.

*Manuscript not available; if received in time, it will appear at back of book.
SESSION 4: SHORT TERM CONCENTRATION FLUCTUATIONS

4.2 WHENCE THE FLUCTUATIONS IN MEASURED VALUES OF MEAN-SQUARE FLUCTUATIONS?. Paul J. Sullivan, Univ. of Western Ontario, London, Ont., Canada

4.3 A STATISTICAL THEORY OF THE DIFFUSION OF MOMENTARILY AND CONTINUOUSLY RELEASED MATTER. A. Groll, W. aufm Kampe, H. Weber, German Military Geophysical Office, Traben - Trarbach, (FRG) West Germany

4.5 OBSERVED AND MODELED CONCENTRATION FLUCTUATIONS IN A SMALL SMOKE PLUME. Steven R. Hanna, ERT, Concord, Mass.

4.6 ANALYSIS OF TURBULENT GAS-CONCENTRATION FLUCTUATIONS FROM 40 M³ LNG SPILL EXPERIMENTS. Richard T. Cederwall and Howard C. Rodean, Lawrence Livermore National Lab., Livermore, Calif. (Reserve Paper)

4.7 STATISTICAL RELATIONSHIPS BETWEEN METEOROLOGICAL DATA STATIONS AND IMPLICATIONS TO DIAGNOSTIC MODELS IN COMPLEX TERRAIN. W. M. Porch, R. Lange, and D. E. Bennett, Lawrence Livermore National Lab., Livermore, Calif.

4.10 EVALUATION OF SHORT-TERM DISPERSION IN MODERATELY COMPLEX TERRAIN. William D. Ohmstede, William Ohmstede, CCM, Las Cruces, N.M.

SESSION 5: APPLICATIONS OF RECEPTOR MODELING

Chairperson: Ronald L. Petersen, NHC Wind Engineering, Seattle, Wash.

5.1 POLLUTANT DOSAGES: ASSESSING THE EFFECTS OF CONCENTRATION FLUCTUATION. S. A. Edgerton, M. A. K. Khalil, and R. A. Rasmussen, Oregon Graduate Center, Beaverton, Ore.

5.3 SPATIAL DISTRIBUTION OF PARTICULATES IN DENVER AND ITS IMPLICATIONS FOR MODELING AND REGULATION. David Greenland and Richard Yorty, Univ. of Colorado, Boulder, Colo.

*Manuscript not available; if received in time, it will appear at back of book.
SESSION 6: MEASUREMENT AND MODELING OF MEDIUM AND LONG RANGE TRANSPORT

6.4 EVALUATING A MEDIUM-RANGE AIR POLLUTION MODEL USING LIDAR MEASUREMENTS. Stephen F. Mueller and Lawrence M. Reisinger, TVA, Muscle Shoals, Ala.

6.5 A FIELD INVESTIGATION OF AN ATMOSPHERIC SF6 TRACER PUFF RELEASE. Brian Lamb, Washington State Univ., Pullman, Wash.

6.7 EVALUATION OF STATISTICAL LONG RANGE TRANSPORT AND ACIDIC DEPOSITION MODELS AND DEVELOPMENT OF AN LRT MODELLING SYSTEM. E. Alp, M. D. Moran, R. V. Portelli, R. J. Vet, Concord Scientific Corp., Toronto, Ont., Canada

6.8 CLIMATOLOGICAL VARIABILITY IN MODELING OF LONG-TERM REGIONAL TRANSPORT AND DEPOSITION OF AIR POLLUTANTS. Jack D. Shannon, Argonne National Lab., Argonne, Ill.

6.9 The following two papers will be combined for presentation.

6.9A MONTHLY WET DEPOSITION VARIABILITY AS SIMULATED BY A TRAJECTORY PUFF MODEL AND ITS APPLICATION IN STUDYING EMISSION REDUCTION EFFECTS ON RECEPTORS. Gloria Ellenton and Prasanta K. Misra, Ontario Ministry of the Environment, Toronto, Ont., Canada

6.11 A MODELING STUDY OF CERTAIN METEOROLOGICAL PROCESSES IN THE ACIDIFICATION OF RAIN. Martin J. Leach, Brookhaven National Lab., Upton, N.Y. (Reserve Paper)

SESSION P2: SECOND POSTER SESSION (See GENERAL INFORMATION for details)

P2.1 ARCTIC HAZE: A RESULT OF LONG-RANGE TRANSPORT. Wolfgang E. Raatz, Air Resources Labs., NOAA, Boulder, Colo.

*Manuscript not available; if received in time, it will appear at back of book.
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2.2</td>
<td>A MULTI-BOX MODEL STUDY OF LONG RANGE TRANSPORT OF ATMOSPHERIC SULFUR COMPOUNDS.</td>
<td>T. Steven Yuen, Texas A&M Univ., College Station, Tex.</td>
</tr>
<tr>
<td>P2.3</td>
<td>Paper Withdrawn.</td>
<td></td>
</tr>
<tr>
<td>P2.4</td>
<td>WORLDWIDE MEAN MIXED LAYER HEIGHTS BASED ON AN 8-YEAR STUDY PERIOD.</td>
<td>M. E. Capuano and M. K. Atchison, ENSCO Inc., Indian Harbour Beach, Fla.</td>
</tr>
<tr>
<td>P2.8</td>
<td>THE EFFECT OF VERTICAL WIND SHEAR ON REGIONAL-SCALE TRAJECTORIES IN NEAR-FRONTAL CONDITIONS.</td>
<td>W. E. Davis, Battelle NW, Richland, Wash.</td>
</tr>
<tr>
<td>P2.9</td>
<td>OBSERVATIONS OF THREE-DIMENSIONAL SO₂ DISTRIBUTIONS IN AN URBAN COASTAL ENVIRONMENT.</td>
<td>Dian J. Gaffen and Robert D. Bornstein, San Jose State Univ., San Jose, Calif.</td>
</tr>
<tr>
<td>P2.10</td>
<td>THE EFFECT OF PLATFORM-TYPE STRUCTURES ON DISPERSION AND PREDICTED SHORELINE CONCENTRATIONS -- A PHYSICAL MODELING STUDY.</td>
<td>Ronald L. Petersen, NHC Wind Engineering, Seattle, Wash.</td>
</tr>
<tr>
<td>P2.11</td>
<td>AIRCRAFT OBSERVATIONS OF SNOWFALL FROM A SYNTHETIC CRUDE OIL PLANT PLUME.</td>
<td>L. Cheng, D. Rogers, A. Davis, Alberta Research Council, Edmonton, E. Peake, Univ. of Calgary; and K. L. Grandia, INTERA Technologies Ltd., Calgary, Alta., Canada</td>
</tr>
</tbody>
</table>

SESSION 7: ATMOSPHERIC TRANSPORT AND REMOVAL PROCESSES

Chairpersons: Gale Hoffnagle, TRC Environmental Consultants, E. Hartford, Conn.; and Jack D. Shannon, Argonne National Lab., Argonne, Ill.

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>EDDY CORRELATION MEASUREMENTS OF DRY DEPOSITION FLUZES USING A TUNABLE DIODE LASER ABSORPTION SPECTROMETER GAS MONITOR.</td>
<td>G. C. Edwards, G. L. Ogram, Ontario Hydro Research Division, Toronto, Ont., Canada</td>
</tr>
<tr>
<td>7.2</td>
<td>EXPERIMENTAL EVALUATION OF PLUME DEPLETION MODELS.</td>
<td>T. W. Horst, J. C. Doran, Battelle NW, Richland, Wash.</td>
</tr>
<tr>
<td>7.3</td>
<td>TRANSFORMATION PROCESSES AND WET DEPOSITION ON THE URBAN SCALE.</td>
<td>A. A. N. Patrinos, R. L. Tanner, and R. M. Brown, Brookhaven National Lab., Upton, N.Y.</td>
</tr>
<tr>
<td>7.4</td>
<td>EVALUATION OF WET DEPOSITION CALCULATIONS IN THREE REGIONAL AIR POLLUTANT TRANSPORT MODELS.</td>
<td>Daniel J. McNaughton, TRC Environmental Consultants, E. Hartford, Conn.</td>
</tr>
<tr>
<td>7.5</td>
<td>A REGIONAL SCALE LAGRANGIAN NONLINEAR CHEMISTRY MODEL FOR ACID DEPOSITION.</td>
<td>Lawrence I. Kleinman, Brookhaven National Lab., Upton, N.Y.</td>
</tr>
<tr>
<td>7.6</td>
<td>CONTRIBUTION OF NON-PRECIPITATING CLOUDS TO ACID DEPOSITION.</td>
<td>A. J. Alkezweeny and K. M. Busness, Battelle NW, Richland, Wash., and D. W. Koppenaal, Univ. of Kentucky, Lexington, Ky.</td>
</tr>
<tr>
<td>7.7</td>
<td>3-D NUMERICAL SIMULATION OF TRANSPORT AND TRANSFORMATION OF POLLUTANTS IN A FIELD OF CONVECTIVE CLOUDS.</td>
<td>Michal Niewiadomski, Atmospheric Environment Service, Ont., Canada</td>
</tr>
</tbody>
</table>

Manuscript not available; if received in time, it will appear at back of book.
7.8 AN EULERIAN MODEL FOR SCAVENGING OF POLLUTANTS BY RAINDROPS. Sudarshan Kumar, General Motors Research Labs. (GM Res. Lab.), Warren, Mich.

SESSION 8: MEDIUM AND SHORT RANGE DISPERSION IN COASTAL SETTINGS

8.2 SIMULATION OF A RECENT MESOSCALE DISPERSION EXPERIMENT OVER A LAND-WATER-LAND AREA. Kenneth Nyren, Torben Mikkelsen, and Sven-Erik Gryning and Soren Thykier-Nielsen, Riso National Lab., Roskilde, Denmark

8.4 A METHOD TO CHARACTERIZE LOCAL METEOROLOGY FOR AIR POLLUTION STUDIES AND EMERGENCY RESPONSE NEEDS. C. G. Lindsey, C. S. Glantz, Battelle NW, Richland, Wash.

8.5 A HYBRID MODEL FOR COMPUTING GROUND-LEVEL CONCENTRATION NEAR A COASTAL PLANT. A. Kumar and S. T. Thomas, Univ. of Toledo, Toledo, Ohio

8.6 SIMULATED POLLUTANT CONCENTRATIONS IN NEW YORK CITY USING LINKED PBL AND EULERIAN GRID MODELS. R. Bornstein, R. Salvador and U. Pechinger, San Jose State Univ., San Jose; S. Klotz and R. Street, Stanford Univ., Stanford; and L. J. Shieh, IBM Scientific Center, Palo Alto, Calif.

8.9 HORIZONTAL DISPERSION POTENTIAL AT AN OFFSHORE SITE AS A FUNCTION OF WIND SPEED AND VERTICAL STABILITY. Alex W. Bealer, Dames & Moore, Santa Barbara, Calif.

*Manuscript not available; if received in time, it will appear at back of book.