METEC Congress 03

3rd International Conference on Science and Technology of Ironmaking

Proceedings

Düsseldorf, 16–20 June, 2003
Contents

Opening remarks

 IRONMAKING

1 Opening Session
1.1 Review of ECSC research work in ironmaking 1
 K. Mülheims, M. Peters, H.B. Lungen

1.2 50 years of research and development in cokemaking – the
 contribution of European coal and steel community 12
 D. Vogt, P. Arndt, F. Huhn, R. Alvarez

1.3 Ironmaking in North America 17
 F.C. Rorick, J.J. Poveromo

1.4 The Latest trends and future aspects in Japanese
 ironmaking Technology 27
 I. Ogata, M. Sanui

1.5 Ironmaking technology in Western Europe 33
 M. Peters, H.B. Lungen

1.6 Ironmaking trends in Brazil 40
 C.B. de Abreu Neto, F.D. Silva

1.7 Technological progress of China′s ironmaking after its
 annual tonnage surpassed 100 mtions in 1995 44
 S. Zhang, H. Yin

2 Smelting reduction/Continuous steelmaking

2.1 CRISP – The novel Hatch continuous reduced iron steelmaking
 process .. 50
 F.W. Wheeler, Y.M. Gordon, J.G. Wheeler

2.2 PRIMUS – Production of coal-based hot metal & recovery of
 iron and steelmaking residues 55
 M. Solvi, T. Hansmann, R. Frieden, J.-L. Roth

2.3 Iron ore smelting processes: 60
 Gasmelt way to efficiency
 S.W. Kartavzew

2.4 Operation results of the Corex and Corex gas based DR Plant
 at Saldanha steel ... 62
 C. Louwrens, J. Gregory, K. Wieder, C. Böhm

2.5 In-site observation of Reduction of iron-oxide mixed with
 graphite using high temperature x-ray diffractometry 68
 I. Seki, K. Nagata
WE PUT A PREMIUM ON PROTECTING THE ENVIRONMENT.

MANGACHOC® extends the service life of your hot metal and steel ladle chocks – lubrication-free

For example:
A French steel works equipped a 250 t steel ladle with highly wear-resistant, maintenance-free chocks from MANGACHOC.

After more than 5 years of uninterrupted operation the chocks exhibited minimum wear of only 1.5 mm. Previously red brass bearings had to be replaced every year.

Another positive aspect is that due to the good condition of the joints the ladle can always be optimally filled and emptied.

Since then many steel works have equipped their hot metal and steel ladles with maintenance-free, highly wear-resistant chocks from MANGACHOC.

We make the progress.

MANGACHOC
Metall-Verschleifltechnik GmbH
Am Ottenhauser Berg 40, Gersweiler
D-66128 Saarbrücken
Tel.: + 49 (0) 6 81 -70 180
Fax: + 49 (0) 6 81 -70 30 81
e-Mail: MANGACHOC@t-online.de
Internet: www.MANGACHOC.de

3 Blast furnace automation, models and measuring techniques

3.1 Effective use of automation at blast 74 furnace a (voestalpine) and blast furnace 5 (Iscor)
J. Mauhart, G. Pillmair, P. Lawrence, K. Spalek, J. Hoerl, B. Schuerz

3.2 Influence of non-uniformity of material 78 and gas distribution on heat exchange regularities in the iron blast furnace
Y. Gordon, N. Spirin, V. Shvidkiy, Y. Yaroshenko

3.3 Industrial application of the CRM blast 83 furnace model at Sidmar
G. Danloy, J. Mignon, R. Munnix, G. Dauwels, L. Bonte

3.4 Optimisation of energy consumption in 89 ironmaking processes by combined use of coal, dust and waste
A. I. Babich, H. W. Gudenau, D. G. Senk

3.5 Recent advances in the modelling of 95 solid flows in the blast furnace
S. A. Zaïmi, D. Sert, J. B. Guillot, H. Biausser

4 Coke plant new construction and ancillary plants

4.1 State-of-the-art control system for the 101 world's largest state-of-the-art coking plant
F. W. Schaefer, B. Wemhömer, C. Schubert

4.2 Successful start-up of the new 105 Lucchini-Piombino coke battery
G. Gosio, M. Bianchi, S. Pivot, A. Storea, R. Loddo

4.3 New coke oven door sealing system 111 with pressure equalization
H.-J. Giertz, F. Huhn, F. Rossa, J. Strunk

4.4 Ammonia vapours desulfurization at the 116 Fos-sur-mer coking plant
G. Pasquier, J.-P. Pilisi

4.5 Improvements for coke oven gas 118 primary cooling
F. W. Cyris, F. Huhn, F. Rossa, H. Schröder

5 Sintering 1

5.1 Influence of mineralogical properties of 123 iron ores on strength of sinter
J. Okazaki, K. Higuchi, S. Nomura, M. Nakano, M. Naito
OrgaTech GmbH is a consulting company specialising in the areas of steel construction and steel processing. We can offer our knowledge in the following sections:

- strategic re-organisation of sales, production, logistics
- development of concepts for re-organisation measures
- project management for preparation of projects and operationalization of measures
- interim management
- IT implementation
- connection of production systems to SAP
- interface management between non-SAP systems and SAP systems to safeguard business processes and convergent data within the company

5.2 Selection of iron ores for the sintering process an integrated view

5.3 Mechanism of high iron and low silica sintering and its potential industrial applications

5.4 Sinter quality: Efforts and status at Tata Steel
U.S. Yadav, B.K. Das, A.D. Baijal

5.5 Influence of pore blockade by molten slag on reduction behavior of wustite compact
M. Nakamoto, H. Ono-Nakazato, H. Kawabata, T. Usui

6 Blast furnace injection and raceway conditions
6.1 Numerical study of gas-solid flow in the raceway of a blast furnace
Y.Q. Feng, D. Pinson, A.B. Yu, S.J. Chew, P. Zulli

6.2 Commissioning and first operational results of blast furnace gas injection at voestalpine Stahl GmbH
T.H. Buergler, G. Brunnbauer, A. Ferstl

6.3 Influence of high PCR operation on coke degradation in the blast furnace
J. Chen, W. Xu, H. Qian

6.4 Development of a new recycling process of automobile shredder residue combined with ironmaking process

6.5 Understanding the improved blast furnace operations at Port Kembla associated with the introduction of pulversised coal injection

7 Coke quality

7.1 Coke Reactivity influence on the iron melting process in Magnitogorsk Iron and Steel Works JSC

7.2 Reaction kinetics of coke and some carbonaceous materials with CO₂ and coke strength after reaction
M. Kawakami, Y. Mizutani, T. Ohyabu, T. Takenaka, S. Yokoyama
7.3 Optimisation of coke quality by incorporation of additives – Investigations at laboratory and pilot scales
P. Pernot, J. Bâhé, D. Vogt

7.4 Study on the breakage mechanism of cokes before and after gasification reaction
H. Yamaoka, S. Suyama, K. Nakano

7.5 Studies on blast furnace coke degradation – a case study with low reactivity stamp charged beehive coke
P. Chaubal, H.S. Valia

8 Blast furnace fundamentals 1
8.1 Characteristics of Liquid Hold-ups in one- and two-dimensional cold models for the dripping zone of a blast furnace
H. Kawabata, Z. Liu, T. Usui

8.2 User-friendly tool for simulating alternative production routes in iron and steelmaking
M. Angerman, M. Harju, S. Pöyhtäri, J. Sippola

8.3 Experimental studies of gas liquid powder flow in moving particles
D. Pinson, T.S. Pham, A.B. Yu, P. Zulli

8.4 Numerical analysis on static powder accumulation in blast furnace
H. Nogami, S. Pintowantoro, J. Yagi

8.5 Modelling of gas-powder flow in a blast furnace
X. Dong, D. Pinson, S. Zhang, A. Yu, P. Zulli

9 Pelletizing 1
9.1 Thermodynamic Approach on the coupling phenomenon of reduction and gasification
Y. Kashiwaya, M. Kanbe, K. Ishii

9.2 Abnormal swelling during reduction of cement bonded iron ore pellets with CO-CO₂ gas mixtures containing traces of cos
S. Hayashi, Y. Iguchi

9.3 Development of fluxed blast furnace pellets with application of coatings
L. Hooey, M. Hallin, K. Raipala

9.4 Properties of blast furnace pellets. What makes or breaks their metallurgical quality?
R. Chaigneau, A.L.J. van der Panne

9.5 Research regarding the importance of adding fine fractions at the micro-pelletizing of blends destined for agglomeration
A. Nicolae, M. Nicolae, G.G. Calea, C. Atanasescu

10 Coke plant operation and models
10.1 Quantitative diagnostic techniques for coke oven
H. Egawa, M. Yokomizo, M. Sakaida

10.2 An integrated process management system based on internet technology at the Hüttenwerke Krupp Mannesmann coking plant
L. Nelles, W. Pesy

10.3 Optimisation of coke oven charging by use of a mathematical model
J.L. Karst, E. Petit, J.P. Gaillot

10.4 Analysis of chamber width measurements as a tool for coke oven life prolongation
H. Inamasu, N. Takayama, M. Grosse-Wilde, F. Huhn

10.5 The heating model of the coke ovens at Sollac-Dunkirk
F. Honnart, F. Bruckert, J. Andre

Steel pouring ladles of the new generation, equipped with our Mainfree Bearing System.
After one year of intensive use the bearings of 22 new steel ladles equipped with the Mainfree System do not show any wear – at minimum maintenance!

Using the Mainfree Concept means to balance ecology and economy!

Details: A bearing consisting of a shrunk-on surface-treated inner ring and an outer ring laid into a suspension loop. The specific material characteristics are obtained by the Mainfree Process.

Cold-hardened and compressed by the hydro-spherical process

Application: Maintenance-free and highly wear resistant in environments characterized by high abrasion and high thermal load. When worn out, the system can be completely renewed by an MF inlay. Example: slabs tongs, slab shears, guide rolls, roller tables, slag transport

Dr.-Ing. Folz GLEITLAGERTECHNIK GmbH
Tel. +49 (0)6806/922332, Fax: +49 (0)6806/922331
11 Direct, reduction, alternative ironmaking

11.1 The new way of ironmaking for a sustainable development in the steel industry
 H. Tanaka, C. Raggio

11.2 Floss furnace – nitrogen-free ironmaking
 F. Fink

11.3 Kinetics of iron carbide formation from reduced iron and production in fluidized-bed by using CO–CO$_2$–H$_2$–H$_2$O–H$_2$S and CO–CO$_2$–H$_2$–H$_2$O-mixtures

11.4 Optimization of the design and operating parameters of shaft furnaces
 Y. Gordon, V. Shvidkiy, Y. Yaroshenko

11.5 Technical, economical and ecological aspects for optimised use of fossil primary energies in integrated steel plants for crude steel production
 K. Knop, P. Duarte, E. Zendejas, U. Gerike

12 Blast furnace relining, rebuild and cooling

12.1 Modernization of hot metal production at voestalpine Stahl Linz GmbH
 A. Ferstl, G. Brunnbauer, G. Pillmair, R. Kastner, W. Stastny, H. Mayrhofer

12.2 Development of blast furnace production of OAO MMK
12.3 Copper staves – a comparison of design, performance and future prospects
H.-G. Wobker, F. Böert, C.M. Dratner

12.4 Mid-campaign repair of Rautaruukki Steel Nr. 1 blast furnace in July 2002
J. Swanljung, P. Inkala, P. Mannila

12.5 Operational experience with advanced shell cooling elements at BF 5A of Arcelor – EKO Stahl
J. Buchwalder, T. Fuchs, J. Hunger, P. Heinrich, C. Schauer

13 Residual materials

13.1 Oxygen cupola for recycling waste oxides from an integrated steel plant
M. Peters, P. Schmörle, K. Kessele, L. Stahl

13.2 The development of zinc flow arrangement for internal recycling of metallurgical wastes with high content of zinc
J. Čurilla

13.3 Swelling behaviour of cement-bonded briquettes
M. Singh, B. Björkman

13.4 Slag Recycling within the steelworks: modeling of internal reprocessing routes
E. Hess, C. Grisvard, J.-P. Birat, J. Defays, J.-M. Bonte, P. Russe

13.5 Recycling of by-product pellets as burden in the blast furnace process: A lab and pilot scale investigation
R. Robinson, L. Sundqvist Ökvist

14 Blast furnace life time, hearth, relining, BF pellet operation

14.1 Advances in blast furnace equipment technology mainly for extending furnace life
Y. Omatsu, K. Anan, K. Akagi, A. Shiga, M. Nitta

14.2 Blowing-in and first months of BF4 Dunkerque operation after its relining
J.L. Bouttement, J.L. Eymond, G. Lesoin

14.3 From foundation to bleeder valve platform in 12 months – the complete rebuilding of Corus Port Talbot No. 5 blast furnace
P. May, I. Craig

14.4 Model study of the effect of coke free space on blast furnace hearth drainage

14.5 Life prediction modelling for blast furnace cast iron staves
B. Fraser, R. Nightingale, B. Scott, N. Di Giorgio, R. Dwight

15 Pelletizing, iron ore mining, BF pellet operation

15.1 Rapid reduction and melting of carbon composite ore briquettes binders by coal
M. Shimizu, T. Maeda, A. Kasai, Y. Matsui

15.2 Reaction enhancing mechanism in ore composite pellets heated at elevated temperatures
Y. Iguchi, F. Meng

15.3 Development of high quality blast furnace pellets at CVRD
A. Piccolo, E. Gariglio, M. Botelho, W. Mafra, V. Ritz

15.4 The mineralogy of west angelas iron ore – the key to unlocking its potential
R.C. Bergstrand, A.G. Waters, J.M.F. Clout

15.5 All pellets operation on Kobe No. 3 blast Furnace under intensive coal injection
K. Ito, K. Hoshino, S. Kitayama, T. Matsuo, K. Kadochuchi, Y. Matsui, R. Ono

16 Direct reduction

16.1 Development of SIMPAX, a neural network based optimization for MIDREX direct reduction plants
F.M. Al-Dulaijan, F. Görner, B. Lang, S.C. Montague

16.2 Continious DR technology improvement at Ispat International
U. Braun, J. Farley, I. Hernandez, A. Takoo, G. Tsvik

16.3 Adjustment of Ghaem DR Process
N. Towhidi, A. Sadegh, B. Niknahad

16.4 Redsmelt NST: An innovative technology for the improvement of the environmental impact of iron and steelmaking
G. Gosio, L. Chiapelli, R. Degel, P. Fontana, P. Bertossi

16.5 The technology of low coal rate and high productivity ironmaking in a hearth furnace
W.-K. L, D. Huang

17 Blast furnace life time 2, hearth 2

17.1 Monitoring the blast furnace hearth refractory with the 1150°C isotherm and acoustic wave measurements
B. Fraser, F. Tanzil, P. Zulli, R. Dwight
17.2 Application of different measuring techniques for the evaluation of hearth permeability
C. Franssen, O. Havelange, G. Danloy, C. Petit, H. Pierret, D. Sert, M.J. Venturini

17.3 Continuous measurement of hot metal flow rates in the blast furnace
M. Peters, H.-P. Rüther, P. Schmole

17.4 Blast furnace hearth drainage – challenges of implementing fundamental knowledge
P. Zulli, F.W.B.U. Tanzil, Q. He, B.D. Wright, I. Bean, R.J. Nightingale

17.5 On-line wear determination for improved life-time of blast furnace hearth based on heat-flux meters
O. Höfer, R. Klima, R. Altland, B. Beckmann, H.-G. Grabietz

18 Coke quality 2

18.1 High temperature properties of coke, critical for the lower part of blast furnace
B. van der Velden, J. Trouw, C. Atkinson, L.C.G.M. Bol

18.2 Coke strength after reaction (CSR) and blast furnace performance
M.H. Best, J.A. Burgo, H.S. Valia

18.3 Raw materials monitoring to improve blast furnace operation
R.M. Poultney, C.R. Bennington

18.4 The significance of cracking reactions in coke ovens for coke quality
P. Arendt, F. Huhn, U. Jahnsen, H. Kühl, J. Spitz

19 Fundamentals 2

19.1 Rate enhancement of reduction of sinter by the H\textsubscript{2} injection into the lower part of a blast furnace shaft
T. Usui, H. Kawabata, H. Ono-Nakazato, Y. Goto

19.2 Behavior of chlorine and alkalis in the blast furnace and effect on sinter properties during reduction
E. Lectard, E. Hess, R. Lin

19.3 Effect of CaO addition on the reducibility of FeO in CaO-SiO\textsubscript{2}-FeO Slag powder
H. Ono-Nakazato, T. Yonezawa, T. Usui

19.4 Correlation between the surface structure and the iron nucleation in the wüstitre reduction
M. Bahgat, Y. Sasaki, K. Ishii
19.5 Improvement of blast furnace reaction 539
 efficiency by controlling the temperature
 of thermal reserve zone
 M. Naito, M. Nakano, S. Nomura

20 New processes

20.1 The Transition of the cokemaking 544
to the single-chamber-system
G. Nashan, W. Rohde, K. Wessiepe

20.2 SCOPE 21 cokemaking process 550
H. Nakai, M. Sasaki, M. Matsuura,
K. Nishioka, I. Sugiyama, S. Suyama

20.3 Rapid ironmaking at lower temperature 556
 and higher oxygen potential
K. Nagata

20.4 Feasibility study of hydrogen generator 563
 with molten slag granulation
T. Akiyama, T. Mizuochi, J.-l. Yagi,
H. Nogami

20.5 Some physical properties of calcium 569
 ferrite melts
K. Nakashima, K. Mori, N. Saito, N. Hori,
R. Tanaka

21 Environments

21.1 Improved flue-gas cleaning by bag filter 574
 at the sinter strand of voestalpine Stahl
 Donawitz
E. Schuster, J. Zimgast, H. Zeiner, J. Pössler

21.2 Minimization of dioxin emissions during 578
 sintering of iron residues
C.M. Moore, R. Deike, C. Hillmann

21.3 Influence of coke plant emissions on 582
 ambient air quality against the background
 of new legal regulations in the
 European Union
M. Hein, F. Huhn, M. Sippel

21.4 CO₂ mitigation technologies in the steel 588
 industry: A benchmarking study based on
 process calculations
J.-P. Birat, F. Hanrot, G. Danloy

21.5 Experience in Salzgitter with different 592
 types of ceramic burners in hot stoves
R. Hebel, J. Pethke

22 BF charge distribution, coke fines
 and coal for cokemaking

22.1 Recent blast furnace burden distribution 598
 within BHP steel
P.R. Austin, S.J. Chew, N. Di Giorgio, P. Zulli

22.2 The mini-oven as a model for coke 605
 production
G. Neri, G. Panunzio, A. Ridi, A. Mollica

22.3 Coal blending theory for dry coal 609
 charging process
S. Nomura, T. Arima, K. Kato, M. Nakano,
M. Naito

22.4 The revival of predominantly midvolatile 614
 coal blends to produce high quality blast
 furnace coke
C.J. Kolijn, M.A. Khan, D.A. Corriveau

22.5 Production of iron from the charge 621
 prepared with petroleum coke breeze
V.Y. Savinov, A.V. Terentiev, S.K. Sibagatullin,
N.P. Sysoev

Masterpiece Technology

Mixing
Pumping
Transporting

Specialized on Systems for unshaped Refractories

Hall 6, Stand 6 E 11, contact us for detailed information

Lerchenweg 8 D-64572 Büttelborn
Tel. 0049 6152 83993 Fax. 0049 6152 84644
E-mail. MPTroessler@t-online.de
Homepage. www.mpt-masterpiece.com