4th European Coke and Ironmaking Congress

Paris - La Défense
June 19-21, 2000

PROCEEDINGS
FIRST VOLUME

Organization: ATS (French Iron and Steel Technical Association)
Detailed Contents

Session 1: Plenary Session

1.1 - Coke quality requirements by European blast furnace operators in the turn of the millennium: Grosspietsch K.H. (Salzgitter AG), H.B. Lüngen, (VDEh), Germany, Dauwels G., (Sidmar), Belgium, Ferstl (Voest Alpine Stahl), Austria, Karjalaiti T., (Rautaruukki), Finland, Negro P., (Irsid), France, van der Velden B., (Corus), the Netherlands, Willmers R., (Corus), United Kingdom

1.2 - Coke quality requirements from a North American perspective: O'Donnell E.M., (US Steel), Poveromo J.J., (Quebec Cartier Mining Co.), USA

1.3 - World coal and coke market present and future: Terjung J., (RAG), Germany

1.4 - Status of Direct and Smelting Reduction in the year 2000: Fruehan R.J., (Carnegie Mellon University), USA, Astier J.E., (Consultant), France, Steffen R., (VDEh), Germany

Session 2: Ironmaking

Blast Furnace Operating Performance

2.1 - Outlook for North American ironmaking: Cheng A., (National Steel), Rorick F.C., (Bethlehem Steel), USA, Ranade M. (Ispat Inland)

2.2 - Decreasing blast furnace process costs at Iscor long products: Vermeulen P., Hand W., Seegers W., (Iscor), South Africa

2.4 - 100 % pellet operation results at Piombino Works: Perrini P.G., Merollar J., (Lucchini), Chiarotti U., Faraci E., (CSM), Italy

2.5 - Increasing ironmaking availability and cost effectiveness with productive maintenance: Kurvinen E., Kallo S., (Rautaruukki), Finland

Session 3: Cokemaking

Coal Selection, Blending

3.1 - Effect of impurities on coke quality: Pernot P., (CPM), Dumay D., (Sollac Lorraine), Brun B., (Sollac Méditerranée), France

3.2 - Selective crushing and blending. Methodology and operational experiences: Erasmus H., (Iscor), South Africa, Rohde W., Stewen W., (RAG), Germany

3.3 - Australian coking coals. Indirect determination of the reactivity of their semifusinites: Angeleri R., (Siderar), Argentina

3.4 - Selection, supply and quality control of coals and produced coke at CST: De Andrade L.A., Alves M.T., (CST), Brazil

3.5 - On attempting to predict the rank and fluidity of coal blends: Sakurovs R., (CSIRO), Australia

3.6 - Design of multicomponent coal blends using high and low ash coals for BF cokemaking: Ghosh N.K., Parthasarathy L., Sharma R.P., (RDCIS, SAIL), India

Session 4: Ironmaking

Iron Ore Preparation

4.1 - Selective granulation technology of iron ores for controlling melting reactions in sintering process: Haga T., Oshio A., Shibata D., Kasama S., Kozono T., Hida Y., (Nippon Steel), Japan

4.2 - Increase of the production capacity of the DL5 sinter plant at Cockerill-Sambre Liège: Biemar L., Dufresne P., (Cockerill-Sambre), Belgium

4.3 - New ignition furnace at sinter plant No 2 in Sollac Rombas: Dubs A., Témoin F., Weiser B., Lecomte B., (Sollac Lorraine), France

4.4 - Relationship between reductant consumption and sinter quality in Rautaruukki blast furnaces: Hooey P.L., Heinänen K., (Rautaruukki), Finland

4.5 - Effect of raw materials on blast furnace operation: the use of an experimental blast furnace: Dahlstedt A., Hallin M., (LKAB), Wikström J.O., (Mefos), Sweden
SESSION 5: COKE MAKING

COKE QUALITY AND COKING CONDITIONS 147

5.1 - The comparison of coke quality from a by-product (USA), a non-recovery (China) and a heat recovery coke plant (USA):
Valia H.S. (Ispat Inland), USA

5.2 - Control and prediction of coke strength at Baosteel:
Hu Desheng (Baosteel), China

5.3 - Enhancement of flexibility in coke production and effects on coke quality:
Stoppa H., Opdenwinkel H., Essmann W., (Deustche Steinkohle AG), Arendt P., Huhn F., Küh H., (DMT), Germany

5.4 - Coke quality at BHP Steel Port Kembla:
Horrocks K.R.S., Cunningham R.B., Ellison J.F., Nightingale R.J., (BHP) Australia

SESSION 6: IRON MAKING

LOW COKE RATE, HIGH PRODUCTIVITY 183

6.1 - High blast furnaces productivity operations with low coke rates in European Union:
Lacroix Ph., (Sollac Mediterranee), France,
Dauwels G., (Sidmar), Dufresne P., (Cockerill Sambre), Belgium, Godijn R., (Corus), the Netherlands, Perini P.G., (Luccini), Italy, Stricker K.P., (HKM), Germany, Virtala J., (SSAB), Sweden

6.2 - New development about high PCI for Baosteel:
Guo Kezhong, Li Zhaoyi, Xu Wanren, (Baosteel), China

6.3 - Achievement of high rate pulverized coal injection of 266 kg/t at Fukuyama No 3 blast furnace:
Okochi I., Maki A., Sakai A., Shimomura A., Sato M., Murai R., (NKK), Japan

6.4 - PCI at the turn of the century:
Toxopeus H., van de Stel J., Molenaar R., 204 (Corus), the Netherlands

6.5 - High productivity and high natural gas injection in USA:
Wakelin D. et al, USA

SESSION 7: COKE MAKING + IRON MAKING

COKE DEGRADATION IN THE BLAST FURNACE 217

7.1 - Coke quality for a high rate of pulverized coal injection in blast furnace:
Kasai A., Matsui Y., Shimizu M. (Kobe Steel Ltd), Japan

7.2 - Coke quality and its influence on the lower part of the blast furnace:
Beppler E., Langner K., Mülheims K., Peters M., Wolny H.J., (ThyssenKrupp Stahl), Germany

7.3 - Transition of Ispat Inland's No 7 BF from conventional to heat recovery coke:
Knorr E., Carter W., Chaubal P., Moore J., Ranade M., Valia H., Zuke D., (Ispat Inland), USA

7.4 - Investigation of the influence of cokes with different quality on blast furnace operation:
Lin R., Killich H.J., Hartig W., Hochhaus J., (Dillingen), Germany

7.5 - Assessment of coke bed permeability in the lower part of the blast furnace:
Negro P., (Sollac Lorraine), Petit C., Urvo A., (Sollac Méditerranée), Pierret H., Sert D., (Irsid), France

SESSION 8: DIRECT AND SMELTING REDUCTION

GAS DIRECT REDUCTION SHAFT FURNACE I 249

8.1 - Evolution of the shaft furnaces for direct-reduction:
Astier J.E., (Consultant), France

8.2 - Breakthrough technologies for the new millennium:
Tennies W.L., Metius G.E., Kopple J.T., (Midrex Corp.), USA

8.3 - Ispat DRI for continuous steel plant improvement:
Tsvik G., Pielet H.M., (Ispat International), USA

8.4 - ANSDK experience with Midrex plants:
Darwish M., (ANSDK), Egypt

8.5 - Midrex DRI Megamod plant and its achievements during the last five years:
Nair P.M., (Ispat Ind. Ltd), India
SESSION 9: IRONMAKING

ADVANCED PROCESS CONTROL 283

9.1 - Process control of blast furnace using advanced tools:
Alesina G., (Sollac Atlantique), France, Bonte L., Daauw G., (Sidmar), Belgium, den Exter P., (Corus), the Netherlands, Inkala P., (Rautaruukki), Finland, Plüm H.D., (BFL), Germany, Warren P., (Corus), United Kingdom

9.2 - Sachem an intelligent help for blast furnace: 293
Lebonvallet J.L., Helleisen M., Alesina G, Thirion C., (Sollac), France

9.3 - Assessment of blast furnace operations using online process models:
Zulli P, Panjkovic V., Austin P.R., Chew S.J., Tsalapatis J., Di Giorgio N., Mathieson J.G., (BHP), Australia

9.4 - Application of the automatic scanning system for detection of the real coke distribution at BF 5 A of EKO Stahl:
Buchwalder J., Hunger J., Klöppel M., Dobrosokok A., Dango R., Kreuz H.O (Eko Stahl, DDS and MISA), Germany

9.5 - Development of burden distribution control with an advanced bell-less top at Chiba No 6 blast furnace:
Sato T, Nouchi T, Takeda K., Kawai T., Kamano H., Takashima N., (Kawasaki Steel Corp.), Japan

9.6 - Blast furnace burden level and profile measurements using microwave devices:
Hague M.J., Ditcher T.M., (Corus), United Kingdom

SESSION 10: COKE MAKING

COKE PLANT OPERATION 321

10.1 - Cokemaking in the Czech Republic. Present and future:
Kaloc M., Machev V., Magera A., Cieslar J., Mokros P., (Ostrava), Czech Republic

10.2 - Stabilization and control of coke plant operations for improved metallurgical coke production at Iscor's Vanderbijlpark Works:

10.3 - Installation of a heating efficiency controle system:
Himmelbauer M., Jank H., Lakata W., Sacher J., Schauer J., (Voest Alpine Stahl), Austria

10.4 - The complete modernization of Taranto by-products plant: development and results:
Trolano E., Di Maggio I., Pensa R., (ILVA SpA Taranto), Italy

10.5 - Coke oven gas cleaning in Zdzieszowice coking plant:
Karcz A., Sikorski Cz., Kaczmarek W., (AMM Krakow), Weglarz T., (Zdzieszowice), Cieslar R., Tomal S., (Koksoprojekt), Poland

SESSION 11: DIRECT AND SMELTING REDUCTION

GAS DIRECT REDUCTION SHAFT FURNACE II 355

11.1 - An overview of the operation and results from the Hylsa 4M self-reforming HyL process plant:
Quintero R., Becerra J., (HyL), Mexico

11.2 - Flexibility in use of iron ores in the HyL process:
Becerra J., Morales R.G., (HyL), Mexico

11.3 - Operation of Grasim Industries' dual HBI-DRI plant in India:
Shukla D.K., (Vikram Ispat Grasim), India

SESSION 12: IRONMAKING

ENVIRONMENTAL ASPECTS IN IRONMAKING 373

12.1 - Reduced aqueous and gaseous emissions from Uhmuiden sinter and pellet plants:
Leuwerink T.H.P., van der Panne A.L.J., (Corus), the Netherlands

12.2 - Environmental improvements from the sintering process:
Southern S., Edmundson J., Hakimian M., (Corus), United Kingdom

12.3 - Decreasing of dioxin emissions at sinter plants:
Philipp J.A., Werner P., Wemhöner R., (ThyssenKrupp Stahl), Germany

12.4 - The recycling of complex iron containing waste oxides:
Moore C.M., Deike R., Hillman C., (DK Recycling), Germany