FAULT DETECTION,
SUPERVISION AND SAFETY OF
TECHNICAL PROCESSES 2003
(SAFEPROCESS 2003)

A Proceedings volume from the 5th IFAC Symposium,
Washington, D.C., USA, 9 – 11 June 2003

Edited by
M. STAROSWIECKI
University of Lille,
Villeneuve d'Ascq, France

and

N.E. WU
Binghamton University,
Binghamton, NY, USA

(In three volumes)

Volume 3

Published for the
INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by

ELSEVIER LTD
Multivariate Process Control Using the FNAD Methodology
T. Tiplica, A. Kobi, A. Barreau

Fault Diagnosis by Qualitative Trend Analysis of the Principal Components: Prospects and Some New Results
M.R. Maurya, R. Rengaswamy, V. Venkatasubramanian

Adaptive Partial Least Squares with Application to Process Monitoring
S. Kumar, S.N. Thennadil, A.J. Morris, E.B. Martin

Isolating Multiple Sources of Plant-Wide Oscillations via Independent Component Analysis
C. Xia, J. Howell

BRIDGE Papers I

Application of Causal Graph GP for Description of Diagnosed Process
J.M. Kościelný, A. Ostasz

A Logical Framework for Isolation in Fault Diagnosis
S. Ploix, S. Touaf, J.-M. Flaus

Combining AI, FDI, and Statistical Hypothesis-Testing in a Framework for Diagnosis
M. Nyberg, M. Krysander

Diagnosability Analysis Based on Component Supported Analytical Redundancy Relations
L. Travé Massuyès, T. Escobet, S. Spanache

Electric Drives

On Line Diagnosis of Induction Motors for Additive and Short-Circuit Windings with Extended Kalman Filter
A. Mendoza, L.J. de Miguel, R. Arnanz, M.A. Pacheco, J.R. Perán

A Diagnostic System for Vacuum Cleaner Motors

Acoustic Source Number Estimation and Its Application to Machine Monitoring
M. Knak, D. Filbert

DAMADICS I (Invited)

Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems (DAMADICS): A Benchmark Study
M. Syfert, R. Patton, M. Bartýš, J. Quevedo

Model-Free Actuator Fault Detection Using a Spectral Estimation Approach: The Case of the DAMADICS Benchmark Problem
F. Previdi, T. Parisini

Pattern Recognition Approach to Fault Diagnosis in the DAMADICS Benchmark Flow Control Valve
A. Marciniaik, C.D. Bocaniala, R. Louro, J. Sa da Costa, J. Korbicz

Actuator Simulation of the DAMADICS Benchmark Actuator System
M. Bartýš, S. de las Heras

Chemical Processes

Monitoring System for Multiphase Hydrogenation in Chemical Plants

A Nonlinear Soft Sensor Based on Modified SVR for Quality Estimation in Polymerization
D.E. Lee, S.-O. Song, E.S. Yoon
On-Line Fault Detection and Diagnosis of a Refinery Process
Disturbance Decoupled Residuals for a Chemical Process
S. SIMANI
Development of Verifiable-by-Inspection Real-Time Control Software for a Dependable Chemical Process
G. THIELE, Th. LAARZ, R. NEIMEIER, G. SCHULZ-EKLOFF, L. RENNER, E. WENDLAND

BRIDGE Papers II

Discrete Event System Diagnosis Using Parameter Estimation Methods
J. FOX, G. SCHULLERUS, M. SCHWAIGER, V. KREBS
The Gaussian Particle Filter for Diagnosis of Non-Linear Systems
F. HUTTER, R. DEARDEN
Multi-Modal Particle Filtering for Hybrid Systems with Autonomous Mode Transitions
S. FUNIAK, B.C. WILLIAMS

Applications I

Leak Detection Conditions in a Pipeline via a Geometric Approach
N. VISAIRO, C. VERDE
Passive Fault Tolerant Control of a Double Inverted Pendulum - A Case Study Example
H. NIEMANN, J. STOUSTRUP
Freeway Incident Detection Using Traffic Information from Mobile Phones
A. ALESSANDRI, R. BOLLA, M. REPETTO
Accommodation of Multi-Leak Positions in a Pipeline
C. VERDE
Safety Analysis and Reliability Estimation of a Networked Control System
P. BARGER, J.-M. THIRIET, M. ROBERT

DAMADICS II (Invited)

Fault Isolation Based on HSFNN Applied to DAMADICS Benchmark Problem
A Hybrid Neuro-Fuzzy and De-Coupling Approach Applied to the DAMADICS Benchmark Problem
F.J. UPPAL, R.J. PATTON, M. WITCZAK
Neural Approximators for Fault Detection of Actuators in the Presence of Friction: The Case of the DAMADICS Benchmark Problem
A.A. PAPADIMITRIOPOULOS, G.A. ROVITHAKIS, T. PARISINI
Fault Detection with Dynamic GMDH Neural Networks: Application to the DAMADICS Benchmark Problem
M. MRUGALSKI, E. ARINTON, J. KORBICZ
Dynamic Neural Networks for Actuator Fault Diagnosis: Application to the DAMADICS Benchmark Problem
K. PATAN, T. PARISINI
On-Line Actuator Diagnosis Based on Neural Models and Fuzzy Reasoning: The DAMADICS Benchmark Study
P. RZEPIEJEWSKI, M. SYFERT, S. JEGOROV

Power Plants and Manufacturing Systems

Decision-Making System Implementation for Fault Diagnosis in Hydroelectric Plants
R. ARNANZ, A. MENDOZA, L.J. de MIGUEL, J.R.P. GONZÁLEZ
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Diagnosis and Reconfigurable Control of a Pressurizer in a Nuclear Power Plant</td>
<td>993</td>
</tr>
<tr>
<td>J. JIANG, Y. ZHANG</td>
<td></td>
</tr>
<tr>
<td>A SOM and Expert System Based Scheme for Fault Detection and Isolation in a Hydroelectric Power Station</td>
<td>999</td>
</tr>
<tr>
<td>S. SALUDES, A. CORRALES, L.J. de MIGUEL, J.R. PERÁN</td>
<td></td>
</tr>
<tr>
<td>Dynamic Scheduling for Minimal Flow Time and Maximum Reliability</td>
<td>1005</td>
</tr>
<tr>
<td>X. WANG, N.E. WU</td>
<td></td>
</tr>
<tr>
<td>Impact of the Monitoring Quality on the Performance of the Maintenance Policy for a Two-Unit System</td>
<td>1011</td>
</tr>
<tr>
<td>A. BARROS, A. GRALL, C. BÉRENGUER</td>
<td></td>
</tr>
<tr>
<td>Additive Fault Detection in a Real Nonlinear System with Saturation</td>
<td>1017</td>
</tr>
<tr>
<td>L.F. BLÁZQUEZ, J.M. FOCES, L.J. de MIGUEL</td>
<td></td>
</tr>
<tr>
<td>BRIDGE Papers III</td>
<td></td>
</tr>
<tr>
<td>A Robust Method for Hybrid Diagnosis of Complex Systems</td>
<td>1023</td>
</tr>
<tr>
<td>G. BISWAS, G. SIMON, N. MAHADEVAN, S. NARASIMHAN, J. RAMIREZ, G. KARSAI</td>
<td></td>
</tr>
<tr>
<td>Fault Diagnosis of Dynamical Systems Based on State-Set Observers</td>
<td>1029</td>
</tr>
<tr>
<td>J. LUNZE, T. STEFFEN, U. RIEDEL</td>
<td></td>
</tr>
<tr>
<td>Model Refinement for Monitoring – Refutation vs. Traditional Parameter Estimation</td>
<td>1035</td>
</tr>
<tr>
<td>A. DOBLANDER, B. RINNER, U. WEISS</td>
<td></td>
</tr>
<tr>
<td>Applications II</td>
<td></td>
</tr>
<tr>
<td>Monitoring Ground-Level Ozone Concentrations in Bordeaux (France)</td>
<td>1041</td>
</tr>
<tr>
<td>A. ZOLGHADRI, M. MONSION, D. HENRY, C. MARCHIONINI, O. PETRIQUE</td>
<td></td>
</tr>
<tr>
<td>Data Based Fault Isolation in Complex Measurement Systems Using Models on Demand</td>
<td>1047</td>
</tr>
<tr>
<td>H. EFENDIC, A. SCHREMPF, L. del RE</td>
<td></td>
</tr>
<tr>
<td>Real-Time Implementation of Fault Diagnosis to a Heat Exchanger</td>
<td>1053</td>
</tr>
<tr>
<td>S. PERSIN, B. TOVORNIK</td>
<td></td>
</tr>
<tr>
<td>Implementation of a Sliding Mode Observer for Robust Reconstruction of Faults on a Crane System</td>
<td>1059</td>
</tr>
<tr>
<td>C. EDWARDS, J.L. LOMORO, C.P. TAN</td>
<td></td>
</tr>
<tr>
<td>Supervisory Control of Malicious Executables</td>
<td>1065</td>
</tr>
<tr>
<td>V.V. PHOHA, X. XU, A. RAY, S. PHOHA</td>
<td></td>
</tr>
<tr>
<td>Fault Detection in Laser Welding</td>
<td>1071</td>
</tr>
<tr>
<td>F. RODRIGUEZ, S. SALUDES, L.J. de MIGUEL, J.A. APARICIO, S. MAR, J.R. PERÁN</td>
<td></td>
</tr>
<tr>
<td>DAMADICS III (Invited)</td>
<td></td>
</tr>
<tr>
<td>Fault Detection Approach Based on Fuzzy Qualitative Reasoning Applied to the DAMADICS Benchmark Problem</td>
<td>1077</td>
</tr>
<tr>
<td>Application of Timed Automata to the Diagnosis of the DAMADICS Benchmark Problem</td>
<td>1083</td>
</tr>
<tr>
<td>J. LUNZE, P. SUPAVATANAKUL</td>
<td></td>
</tr>
<tr>
<td>Comparison of Interval Models and Quantised Systems in Fault Detection with Application to the DAMADICS Actuator Benchmark Problem</td>
<td>1089</td>
</tr>
<tr>
<td>V. PUIG, J. QUEVEDO, A. STANCU, J. LUNZE, J. NEIDIG, P. PLANCHON, P. SUPAVATANAKUL</td>
<td></td>
</tr>
<tr>
<td>Passive Robust Fault Detection Using Non-Linear Interval Observers: Application to the DAMADICS Benchmark Problem</td>
<td>1095</td>
</tr>
<tr>
<td>A. STANCU, V. PUIG, J. QUEVEDO, R.J. PATTON</td>
<td></td>
</tr>
</tbody>
</table>