8.64 Direct Work Control Technique for Switched Reluctance Motors 1044
Patrick C. K. Luk, Ken P. Jinupun, Cranfield University, UK

8.65 Enhanced Simplified Control Algorithm for Surface-Mounted Permanent Magnet Synchronous Motors with Sinusoidal Excitation
Valeriu Olarescu, Sorin Musuroi, University of Timisoara, ROMANIA

8.66 Simulation of an Ingenious Digital Controller for a 6/4 Pole Switched Reluctance Motor 1054
S. Vijayan, V. Rampraszath, S. Paramasivam, Dr. R. Arumugam, Anna University, INDIA

8.67 Study on Robustness-Tracking Control for Linear Servo System 1060
Yanfeng Tian, Qingding Guo, Shenyang University of Technology, CHINA

8.68 Role of Customer Perception to Quality of Service in Power Utility Management
M. A. El-Kady, A. M. Shaalan, A. S. Algarni, King Saud University, SAUDI ARBIA

8.69 A Current Sharing Approach for Parallel PFC Converter Modules 1069
W. W. Sun, Y. J. Guo, Y. Xing, X. D. Sun, LITE-ON Technology Corporation, CHINA

Volume 3
Converters and Inverters II

9.1 A Dual-Transformer Flyback Converter in Critical Conduction Mode 1074
Y. B. Weng, Y. Xing, LITE-ON Technology Corporation, CHINA

9.2 A Novel Common-Source Type Single-Stage PFC Converter 1080
Feng Zhang, Xiubin Zhang, Shanghai Jiaotong University, CHINA;
Tamotsu Ninomiya, Chunfeng Jin, Kyushu University, JAPAN

9.3 Zero-Voltage-Switching PWM Full-Bridge Three-Level Converter 1085
Zhiliang Zhang, Xinbo Ruan, Nanjing University of Aeronautics and Astronautics, CHINA

9.4 A PAC Based Three-Phase Zero-Voltage Soft-Switching PWM Converter 1091
Keqing Qu, Chengbo Sun, Guoqen Cheng, Chunyu Xu, Shanghai University, CHINA;
Taniguchi Katsunori, Osaka Institute of Technology, JAPAN

9.5 A High Power NPC Three-Level Inverter Equipped with IGCTs 1097
Qiongxuan Ge, Xiaoxin Wang, Shuitian Zhang, Yaohua Li, Li Kong, Institute of Electrical Engineering
Chinese Academy of Sciences, CHINA

9.6 Enhanced Control Design of Single Phase AC-DC Converter Using Power Balance Calculator 1101
V. Tipsawanporn, S. Intajag, C. Tarasantsisuk, King Mongkut’s Institute of Technology, THAILAND;
S. Tunyasritrut, Pathumwan Institute of Technology, THAILAND

9.7 Study on Sliding-Mode Control in Three-Level Converters 1105
Xiaofen Zhong, Gangjiang Ye, Naihao Chen, Jiliang Jiang, South China University of Technology, CHINA

9.8 Power Stage and Control Design for the ETO-Based Cascaded-Multilevel Converter for FACTS Applications
Siriroj Sirisukprasert, Yoonfeng Liu, Zhenxue Xu, Bin Zhang, Xigen Zhou, Josh Hawley and Alex Q. Huang,
Virginia Polytechnic Institute and State University Blacksburg, USA

9.9 Recent Developments in Topologies of Single-Phase Buck-Boost Inverters for Small Distributed Power Generators: An Overview
Yaoqiu Xue, Liuchen Chang, University of New Brunswick, CANADA;
Pinggang Song, East China Jiaotong University, CHINA

9.10 An Improved Space Vector PWM Control Algorithm for Multilevel Inverters 1124
Sanmin Wei, Bin Wu, Ryerson University, CANADA; Qianghua Wang, Chengda Co., Ltd., CHINA

9.11 Comparison Study of DC-DC-AC Combined Converters in Integrated Starter Generator Applications 1130
Longya Xu, Jingbo Liu, The Ohio State University, USA
Switched Mode Power Supplies and UPS

10.1 Mixed Voltage /Current Mode Control of PWM Synchronous Buck Converter ... 1136
 Chin Chang, Semtech Corporation, USA

10.2 AC VRM Topologies and Control Techniques for High Frequency AC Power Distribution Systems 1140
 Mei Qiu, Concordia University, CANADA; Praveen K. Jain, Queen’s University, CANADA;
 Haibo Zhang, Cistel Technology Inc., CANADA

10.3 Distributed Point-of-Use Power Supply Architectures ... 1146
 Youhao Xi, Concordia University, CANADA; Praveen K. Jain, Queen’s University, CANADA

10.4 A Microprocessor Controlled Piezoelectric Power Converter ... 1152
 S.W. Fung, M.H. Pong, The University of Hong Kong, CHINA

10.5 Research of Magnetic Integration of 3 Phase Large Power UPS ... 1158
 Yugang Yang, Liaoning Technical University, CHINA; Qingguang Yu, Tsinghua University, CHINA

10.6 Loss Analysis of a Single Phase Fast Transient VRM Converter .. 1161
 Y.Y. Law, Dylan D.C. Lu, Joe C.P. Liu, N.K. Poon, M.H. Pong, University of Hong Kong, CHINA

10.7 A Self-Driven Synchronous Rectification Scheme for Low Output Switching-Mode Converter 1166
 Ya Liu, Yi Jiang, Guichao Hua, Bel Power Co., Ltd., CHINA

10.8 A General Way to Find the Integrated Magnetics Topology .. 1170
 Feng Zheng, Xu Yang, Zhaohan Wang, Xi’an Jiaotong University, CHINA

10.9 Analysis of Leakage-Inductance Effect on Characteristics of Flyback Converter Without Right 1174
 Half Plane Zero
 Hiroto Terashi, Densei-Lambda KK, JAPAN; Tamotsu Ninomiya, Kyushu University, JAPAN

10.10 A Novel Uninterruptible Power Supply Using Flywheel Energy Storage Unit 1180
 Junling Chen, Xinjian Jiang, Dongqi Zhu, Tsinghua University, CHINA

10.11 Design of Distributed Control System of Power Supply of the Telecommunication 1185
 Guiyou Chen, Tongjing Sun, Qingfan Zhang, ShanDong University, CHINA

Power Quality and Reactive Power Compensation

11.1 SVC and AC Load Voltage Regulation Scheme for DC Outputted Three-Phase Induction Generator 1189
 Tarek Ahmed, Katsumi Nishida, Mutsuo Nakaoka, Yamaguchi University, JAPAN;
 Lee Hyun Woo, Kyungnam University, KOREA

11.2 Control of Nested DC-Link Voltage for Dual Three-Point StatCom ... 1195
 Hanxiang Cheng, Shaohua Chen, Guangdong University of Technology, CHINA;
 Xianggen Yin, Huazhong University of Science and Technology, CHINA

11.3 Unified Power Quality Conditioner for Distribution System Without Reference Calculations 1201
 Guozhu Chen, Yang Chen, Luis Felipe Sanchez, Keyue M. Smedley, University of California, USA

11.4 Study on the Dynamic Voltage Restorer Use in an Isolated Power Supply System 1207
 Fang Zhuo, Xi’an Jiaotong University, CHINA;
 Choi San Shing, Sng Eng Kian Kenneth, Wang tongxun, Nanyang Technological University, SINGAPORE;
 Zhaohan Wang, Xi’an Jiaotong University, CHINA;

11.5 Comparison of Two Control Approaches of Static Var Generators for Compensating Source 1213
 Voltage Unbalance in Three-Phase Three-Wire Systems
 Kuang Li, Jinjun Liu, Biao Wei, Zhaohan Wang, Xi’an Jiaotong University, CHINA

11.6 Static VAR Compensator-Based Terminal Voltage Regulation Scheme of Self-Excited Induction 1219
 Generator Driven by Variable Speed Prime Mover for Clean Renewable Energy Utilizations
 Tarek Ahmed, Eiji Hirak, Mutsuo Nakaoka, Yamaguchi University, JAPAN;
 Osamu Noro, Kawasaki Heavy Industry, JAPAN

11.7 A Comparative Study on the Control Schemes of Series Power Quality Controller 1225
 Xiaoyu Wang, Jinjun Liu, Chang Yuan, Zhaohan Wang, Xi’an Jiaotong University, CHINA
11.8 A Static Synchronous Compensator Using Series-Connected Hybrid Multi-Inverters 1230
Dongsheng Li, Shoji Fukuda, Yusuke Kubo, Hokkaido University, JAPAN

11.9 Using Quality Control Center to Improve Power System Stability ... 1236
Y.Q. Zhan, S.S. Choi, D.M. Vilathgamuwa, Nanyang Technological University, SINGAPORE

11.10 High-Frequency Flyback Transformer Linked Utility-Connected Sinewave Soft-Switching 1242
 Power Conditioner Using a Switched Capacitor Snubber
 S. Chandhaket, K. Ogura, M. Nakaoaka, Yamaguchi University, JAPAN,
 Y. Konishi, Fuji Electric Systems Co., Ltd., JAPAN

11.11 A Modified Boost Topology to Minimize Distortion in PFC Rectifier .. 1248
 Muhammad Mansoor Khan, Zhiming Wu, Shanghai Jiaotong University, CHINA

Synchronous and Reluctance Motor Drives

12.1 Integrated Position Sensor Based Self-Tuning PI Speed Controller for Hybrid Stepping Motor Drive 1253
 Dianguo Xu, Panhai Wang, Jingzhuo Shi, Harbin Institute of Technology, CHINA

12.2 Investigation of Flux-Weakening Performance and Current Oscillation of Permanent Magnet Brushless AC Drives
 Y.F. Shi, Z. Q. Zhu, Y.S. Chen, D. Howe, University of Sheffield, UK

12.3 Line Adaptive PAM&PWM Drive for BLDCM .. 1263
 Zhigan Wu, Genfu Zhou, Jianping Ying, Delta Power Electronics Center, CHINA

12.4 Auto-Disturbance Rejection Controller in Direct Torque Control of Permanent Magnet Synchronous Motor Drives
 Sanmin Wei, Bin Wu, Ming Qiu, Congwei Liu, Ryerson University, CANADA

12.5 Research of SRD’s Transient Behavior as Its Two Phases of Windings Are Short-Circuit 1273
 Yugang Yang, Fengyi Guo, Yongji Liu, Liaoning Technical University, CHINA

12.6 A Novel Switching Method for Switched Reluctance Motors ... 1277
 Patrick C. K. Luk, Ken P. Jinupun, Cranfield University, UK

12.7 Initial Rotor Position Estimation of Interior Permanent Magnet Synchronous Motor Using
 High Frequency Signal Injection
 Jianfen Zheng, Limei Wang, Shenyang University of Technology, CHINA

12.8 Sensorless Direct Torque Control for Permanent Magnet Synchronous Motor Based on Fuzzy Logic ...
 Da Sun, Yikang He, Zhejiang University, CHINA; Jian Guo Zhu, University of Technology, AUSTRALIA

12.9 Unattenuated BEMF Detection for Sensorless Brushless DC (BLDC) Motor Drives 1292
 Genfu Zhou, Zhigan Wu, Jianping Ying, Delta Power Electronics Center, CHINA

12.10 Shorten Development Cycle Time and Reduce System Cost when Designing a Brushless 3-Phase Motor Control Application
 Vincent Onde, STMicroelectronics Microcontroller Application Lab., FRANCE;
 Jianwen Shao, STMicroelectronics Power Systems Applications Lab., USA

12.11 Estimate of Rotor Position of BDCM Based on the Third Harmonic Component 1306
 Kun Wei, Zhenli Lou, Zhongchao Zhang, Zhejiang University, CHINA

Modulation and Control Strategies I

13.1 Analysis and Compensation of Matrix Converter Operation Under Abnormal Input Voltage 1311
 Conditions
 Yang Mei, Kai Sun, Daning Zhou, Lipei Huang, Tsinghua University, CHINA

13.2 A Dq-Axis Current Control Technique for Fast Transient Response in Vector Controlled Drive 1316
 of Permanent Magnet Synchronous Motor
 Mongkol Konghirun, King Mongkut’s University of Technology Thonburi, THAILAND;
 Longya Xu, The Ohio State University, USA
13.3 New Application of Neuron-MOS in Digital PWM Generator ..1321
Yuan Yang, Yong Gao, Ningmei Yu, Gaohui Liu, Xi'an University of Technology, CHINA

13.4 A Web-accessible FPGA-based Direct Torque Controller for Permanent Magnet Synchronous Motor ... 1325
Nobukazu Hoshi, Yoshiharu Utsumi, Kuniomi Oguchi, Ibaraki University, JAPAN

13.5 Optimal Fuzzy Control for Nonlinear System and Application to AC Motor Control1331
Zhongke Shi, Northwestern Polytechnical University, CHINA

13.6 Adjustable Frequency Control Using BRM for Induction Heating1335
V.Tipsuwanporn, S.Intajag, King Mongkut's Institute of Technology Ladkrabang, THAILAND;
A.Charean, W.Sawaengsinsakitsit, Kasem Bundit University, THAILAND

13.7 Control of a Three-Phase Converter Under Unbalanced Input Voltage Conditions Using Invert 1340
Sequence d-q Representation
Xiaofeng Sun, Weiyang Wu, Baocheng Wang, Qiang Mei, Kun Wei, Yanshan University, CHINA

13.8 A Novel Algorithm for Identification and Tracking of Power System Harmonics1346
Thip Manmek, Colin Grantham, B. Toan Phung, The University of New South Wales, AUSTRALIA

13.9 Rotor Position and Velocity Estimation for PMSM Based on Sliding Mode Observer 1351
Jie Gu, Yu Zhang, Zhiqian Wu, Jianping Ying, Delta Power Electronics Center, CHINA

13.10 Minimum-Loss Minimum-Distortion Space Vector Sequence Generator for High-Reliability 1356
Three-Phase Power Converters for Aircraft Applications
Rolando P. Burgos, Gang Chen, Fred Wang, Dushan Boroyevich, Center for Power Electronics Systems, USA

13.11 Three-Leg Center-Split Inverter Controlled by 3DSVM under DC Variation1362
Ning-Yi Dai, University of Macau, CHINA;
Man-Chung Wong, Ying-Duo Han, University of Macau, CHINA, Tsinghua University, CHINA

Induction Motor Drives II

14.1 A Study of the Four-Switch Low Cost Inverter that Uses the Magnetic Flux Control Method1368
Zhijian Jiang, Dianguo Xu, Xianguan Zhu, Harbin Institute of Technology, CHINA;

14.2 Closed-Form Analytical Investigation of an Induction Motor Drive Fed from Four-Switch Inverter ... 1372
Jiri Klima, ZCU, CZECH REPUBLIC

14.3 A Novel Speed Compensation Algorithm Based on the Model of Indirect Rotor Field Orientation .. 1378
Control of Induction Motor
Ximing Cheng, Mingji Liu, Minggao Ouyang, Tsinghua University, CHINA;
Fengchun Sun, Beijing Institute of Technology, CHINA

14.4 Evaluation of Additional Loss in Induction Motors, Consequent upon Repair and Rewinding1381
Wenping Cao, K J Bradley, The University of Nottingham, UK; J Allen, Dowding and Mills, UK

14.5 Research on Speed Estimation Algorithm for Induction Motor Drive1387
Zhigan Wu, Dawei Zhi, Jianping Ying, Delta Power Electronics Center, CHINA

14.6 DC Link and Dynamic Performance Features of PWM IGBT Current Source Converter1393
Induction Machine Drives with Respect to Industrial Requirements
Friedrich W. Fuchs, Alfonso Kloenne, Bosch GmbH Christian-Albrechts-University of Kiel, GERMANY

14.7 Some Techniques of Vector Control Systems of Medium Voltage Three-Level Inverters 1399
Xuesen Wei, Tianjin university, CHINA; Xiaoliang Ma, Tianjin Design & Research Institute of Electrical
Drives, CHINA

14.8 Analysis of Voltage Regulator for 3-Φ Self Excited Induction Generator Using Current Controlled ...1404
Voltage Source Inverter
G V. Jayaramiah, B. G. Fernandes, Indian Institute of Technology Bombay, INDIA

14.9 A Dynamic MRAC for Flux Field-oriented Control of Induction Motor1409
Yahan Hua, Song Shen, Yue Wang, Jun Yang, Xi'an Jiaotong University, CHINA

14.10 A Medium Voltage AC Drive with Integrated Isolation Transformer and Active Front End1415
Navid Zargari, Steve Rizzo, Rockwell Automation, CANADA
14.11 Quantization Errors in Digital Motor Control Systems .. 1421
Mongkol Konghirun, King Mongkut's University of Technology Thonburi, THAILAND;
Longya Xu, The Ohio State University, USA; Jennifer Skinner-Gray, Texas Instruments Incorporated, USA.

Motion Control

15.1 Two-Degree-of-Freedom Sensorless Control of Permanent Magnet Linear Synchronous Motor 1427
Based on Nonlinear Observer
Limei Wang, Qingding Guo, Jianfen Zheng, Shenyang University of Technology, CHINA

15.2 Experimental Demonstration of Disturbance Suppression Control with Novel Nonlinear 1432
Disturbance Predictor based on Reconstructed Attractor
Nobutaka Bando, Yoichi Hori, University of Tokyo, JAPAN;

15.3 Comparison among Some Digital Signal Processing Methods for No-Coupling Series-Excited 1436
Motor Testing
Qiuye Zhang, Dianguo Xu, Harbin Institute of Technology, CHINA

15.4 Synthesis and Experimental Verification of Adaptive Nonlinear Control of Position System 1442
Jun-te Yu, Je Chang, College of Engineering, FAMU-FSU, USA

15.5 Fuzzy Logic Speed Estimator to Drive a Four Electric Wheels Truck 1448
R. Pusa, Y. Ait Amira, A. Berthon, L2ES-CREEBEL-UTBM, FRANCE

15.6 A New Stator Resistance Tracker for a Direct Torque Controlled Interior Permanent Magnet Synchronous Machine Drive
Lixin Tang, M. F. Rahman, University of New South Wales, AUSTRALIA

15.7 Behavior of a Drive System Consisting of Two DC Motors with Elastic Shafts Driving the Yankee Drying Cylinder of a Tissue Paper Machine
Costas Michael, Athanasios Safacas, University of Patras, GREECE

15.8 Motion Control for EVs to Improve Ride Comfort Utilizing Speed Pattern Considering Driver's Command
Tomoyuki Saito, Tai Chen Hwa, Yoichi Hori, The University of Tokyo, JAPAN

15.9 Development of a Novel Instantaneous Speed Observer and its Application to the Power-Assisted Wheelchair Control
Sehoon Oh, Yoichi Hori, University of Tokyo, JAPAN

15.10 Fractional Order Control and Its Application of PI^D Controller for Robust Two-inertia Speed Control
Chengbin Ma, Yoichi Hori, Institute of Industrial Science the University of Tokyo, JAPAN

15.11 Equivalent Circuit Based Current-Controlled State Model of Synchronous Machine 1483
R. Wamkeue, N. Kandil, Université du Québec en Abitibi-Témiscamingue, CANADA;
J. El Hayek, École d'ingénieurs et d'architectes de Fribourg, SWITZERLAND;
M. Berrada, Institut Polytechnique Privé de Casablanca, MOROCCO

15.12 Motion Control for Hybrid Electric Vehicle ... 1490
Mohsen Mohammadian, Mohammad Taghi Bathaee, K.N.Toosi University of Technology, IRAN

EMC Issues in Power Electronics

16.1 Comprehensive Analysis of Common Mode EMI for Three-Phase UPS System 1495
Timothy CY Wang, Richard Zhang, Juan Sabate, Michael Schutten, GE Global Research Center

16.2 Study of Coupling Effects among Passive Components Used in Power Electronic Devices 1500
C. P. Wang, D. H. Liu, Jianguo Jing, Tsinghua University, CHINA

16.3 Common-Mode Noise Reduction by Current Cancellation in Balanced Buck-Boost Switching Converter
Masahito Shoyama, Masashi Ohba, Tamotsu Ninomiya, Kyushu University, JAPAN
16.4 High-Frequency Parasitic Currents in Inverter-Fed Induction Motor Drive 1511
Viktor Valouch, Jiří Škrámlik, Ivo Doležel Academy of Sciences of the Czech Republic, CZECH REPUBLIC

16.5 On Discussion of Motor Drive Conducted EMI Issues ... 1515
Q. Liu, W. Shen, F. Wang, D. Borovec, Virginia Polytechnic Institute and State University, USA;
V. Stefanović, I-S Drives, Afton, USA

16.6 Differential Mode EMC Input Filter Design for a Three-Phase Buck-Type Unity Power Factor 1521
PWM Rectifier
T. Nussbaumer, M. L. Heldwein, J. W. Kolar, Swiss Federal Institute of Technology Zurich, SWITZERLAND

16.7 A Filter Design Procedure Incorporating Mixed-Mode EMI Noise for Off-Line Switching 1527
Power Supplies
Hung-I Hsieh, Dan Chen, Taiwan University, Taiwan CHINA; Song Qu, Maxim Integrated Products Inc., USA

16.8 Suppression Techniques of Common-Mode Voltage Generated by Voltage Source PWM Inverter 1533
Hongfei Ma, Dianguo Xu, Harbin Institute of Technology, CHINA;
Lijie Miao, Harbin Power Plant Equipment Corporation, CHINA

Other Applications of Power Electronics

17.1 Study of switching Power Amplifier for Active Magnetic Bearing ... 1539
Shuqin Liu, Darong Chen, Tsinghua University, CHINA;
Shuqin Liu, Feng Xu, Shandong University of Science and Technology, CHINA

17.2 Study of Line-Commutated Thyristor Inverter Under Voltage Dips and Novel Ride-Through 1544
H. Y. Tian, E. K. K. Song, Nanyang Technological University, SINGAPORE

17.3 Study of Relation Between the Capacity and Internal Resistance to Aviatic Battery 1550
Xuecheng Zhao, Heguang Wang, Jun Chang, Xuan Li, Nanyang University, CHINA

17.4 High Power-High Frequency Resonant Mode Electronic Ballast for Metal Halide Lamps 1554
Dongyan Zhang, Weiping Zhang, Yuanchao Liu, Xuesun Zhao, North China University of Technology, CHINA

17.5 Design of LCC Resonant Inverter for Metal Halide Lamp Ballast ... 1558
Dongyan Zhang, Weiping Zhang, Yuanchao Liu, Xuesun Zhao, North China University of Technology, CHINA

17.6 Parallel Operation of Switching Amplifiers Driving Magnetic Resonance Imaging Gradient Coils 1563
Juan Sabate, GE Global Research Center, USA; Qiming Li, GE Global Research Center, CHINA;
William F. Wirth, GE Medical Systems, USA

17.7 A Novel Smart Power Management Integrated Circuit Used for Fluorescent Lamp 1568
Meng-lian Zhao, Xiao-bo Wu, Xiao-lang Yan, Zhejiang University, CHINA

17.8 Continuing Education in Power Electronics .. 1573
Chunting Mi, Z. John Shen, Theresa Coccarelli, University of Michigan-Dearborn, USA

17.9 Study on a Contact-Less Power Transfer System Based on Detachable Transformer Analysis 1579
Teng Han, Fang Zhuo, Tao Liu, Zhaoan Wang, Xi'an Jiaotong University, CHINA

17.10 Comparative Performances of Two High Frequency Resonant Inverters for Dielectric Barrier 1583
Discharge Lamp
Kentaro Fujita, Hidekazu Muraoka, Mikiya Matsuda, Tarek Ahmed, Eiji Hiraki and Mutsuo Nakaoka,
Yamaguchi University, JAPAN; Hyun-Woo Lee, Kyungnam University, KOREA

17.11 A Fuel Cell System with Z-Source Inverters and Ultracapacitors .. 1587
Yoon-Ho Kim, Hyun-Wook Moon, Soo-Hong Kim, Eun-Jin Cheong, Chung-Ang University, KOREA;
Chung-Yeon Won, Sungkyunkwan University, KOREA

Modulation and Control Strategies II

18.1 FPGA Implementation of a New Hybrid Rotor Position Estimation Scheme Based on Three 1592
Symmetrical Locked Hall Effect Position Sensors
Zhaoyong Zhou, Zheng Xu, Tiecai Li, Harbin Institute of Technology, CHINA
18.2 Sinusoidal Waveform Following Method for Optimum Digital Control of PWM inverter
Toshiji Kato, Kaoru Inoue, Terumichi Kita, Shinsaku Kuroda, Doshisha University, JAPAN

18.3 Development of Optimized SVPWM Algorithm Based on CPLD
Jianli Ye, Ping Lin, Liqiao Wang, Zhongchao Zhang, Zhejiang University, CHINA

18.4 A Perfect Tracking Control Design Method Using Multirate Control in Discrete-Time Systems
Jianming Lu, Feng Li, Kyohei Ishihata, Takashi Yahagi, Graduate School of Science and Technology, JAPAN

18.5 Hybrid Fuzzy-PI Neural Networks Control with Feedforward Compensator for Three-Phase Voltage Source Rectifier
Qiang Mei, Baocheng Wang, Weiyang Wu, Xiaofeng Sun, Herong Gu, Yanshan University, CHINA

18.6 Analysis of Multi-Phase Space Vector Pulse Width Modulation Based on Multiple d-q Spaces
Hyung-Min Ryu, Jung-Hwan Kim, Seung-Ki Sul, Seoul National University, KOREA

18.7 Optimal Control of Three-Phase PWM Converter Without Small Signal Linearization
Xiaofeng Sun, Kun Wei, Baocheng Wang, Weiyang Wu, Qiang Mei, Yanshan University, CHINA

18.8 Investigation of the Effects of DSP Timer Jitter on the Measurement of a PWM Controlled Inverter Output Voltage and Current
Douglas J. McKinnon, Baburaj Karanayil, Colin Grantham, University of NSW, AUSTRALIA

18.9 Theoretical Study of 3 Dimensional Hysteresis PWM Techniques
Man-Chung Wong, Tsinghua University, CHINA; Ning-Yi Dai, Jing Tang, University of Macau, CHINA; Yung-Duo Han, Tsinghua University, CHINA

18.10 Dynamics Performance Improvement of A Power Electronic Interfaced Wind Power Conversion System
Z. Chen, Aalborg University, DENMARK; Y Hu, North East Wales Institute of Higher Education, UK

18.11 Design of a Digital Programmable Control IC for Common-Neutral Half-Bridge Bilateral AC-DC-AC Converters
Ming-Fa Tsai, Ming Hsin University of Science and Technology, Taiwan, CHINA; Kuo-Lung Chai, Yu-Tzung Lin, Ying-Yu Tzou, Chaio Tung University, Taiwan, CHINA

Modeling, Analysis and Simulations

19.1 Assessment of Multi-Pulse Converter Average Models for Stability Studies Using a Quasi-Stationary Small-Signal Technique
Alexander Un-Za-li, Rolando P. Burgos, Virginia Polytechnic Institute and State University, USA; Frederic Lecaux, THALES Avionics Electrical Systems, FRANCE; Fred Wang, Dushan Boroyevich, Virginia Polytechnic Institute and State University, USA

19.2 Parallel Tolerance Analysis of a Power Electronic Converter by the Genetic Algorithm with the Island Model
Toshiji Kato, Kaoru Inoue, Yuichi Yano, Shintaro Oshio, Doshisha University, JAPAN

19.3 Output Controllability of Switched Power Converters as Switched Linear Systems
Zongbo Hu, Bo Zhang, Weihua Deng, South China University of Technology, CHINA

19.4 A Novel Model for MOSFET Switching Loss Calculation
Yuming Bai, Yu Meng, Alex Q. Huang, Fred C. Lee, Virginia Polytechnic Institute and State University, USA

19.5 Torque Performance Investigation of Double Three-Phase Motor Using Special Current Waveform
Yong-Le Ai, M.J. Kamper, University of Stellenbosch, SOUTH AFRICA; Yu-Mei Wang, Shi-Ying Yuan, Henan University of Technology, CHINA

19.6 A MATLAB/Simulink Model for a Prototype Integrated Starter Alternator for Automobiles
C. P. Mudannayake, C. P. Mudannayake, M.F. Rahman, The University of New South Wales, AUSTRALIA

19.7 Analysis of Parallel Connection of Rosen Type Piezoelectric Transformers
S.W. Fung, M. H. Pong, The University of Hong Kong, CHINA
Power Electronics in Power Engineering

20.1 Robust Sliding Mode Control of Variable-Speed Wind Power System .. 1712
 Yaojie Sun, Longyun Kang, Weixiang Shi, Binggang Cao, Xi’an Jiaotong University, CHINA;
 Zhongqing Yang, Myway Labs Co., Ltd., JAPAN

20.2 Study on a New Resonant Grounding System ... 1717
 Guohui Zeng, Xiubin Zhang, Feng Zhang, Shanghai Jiaotong University, CHINA

20.3 Simulation Research on Instantaneous Control-Based Power Electronics Transformer 1722
 Jianfeng Zhao, Southeast University, CHINA

20.4 Three Phase Harmonic Load Flow In an Unbalanced AC System Including HVDC Link 1726
 S.H. Hosseini, A. Sajadi, M. Teimouri, Arzaryan Regional Electrical Company, IRAN

20.5 Power Electronics as Efficient Interface of Renewable Energy Sources .. 1731
 F. Blaabjerg, Z. Chen, S.B. Kjaer, Institute of Energy Technology, Aalborg University, DENMARK

20.6 DC Micro-Grid Based Distribution Power Generation System ... 1740
 Youichi Ito, Zhongqing Yang, Myway Labs Co., Ltd., JAPAN;
 Hirofumi Akagi, Tokyo Institute of Technology, JAPAN

20.7 Limit Cycle Based Simple MPPT Control Scheme for a Small Sized Wind Turbine Generator System 1746
 Mikihiro Matsui, Tokyo Polytechnic University, JAPAN; Dehong Xu, Zhejiang University, CHINA;
 Longyun Kang, Xi’an Jiaotong University, CHINA; Zhongqing Yang, Myway Labs., JAPAN

20.8 Modeling of a Combined Photovoltaic / Thermal Energy System ... 1751
 Rafael K. Jardan, Istvan Nagy, Budapest University of Technology and Economics, HUNGARY

20.9 Design Guideline of the Isolated DC-DC Converter in Green Power Applications 1756
 Jin Wang, Markus Reinhard, Fang Z. Peng, Michigan State University, USA;
 Zhaoming Qian, Zhejiang University, CHINA

20.10 Impact of Voltage Phase Jump on Loads and Its Mitigation ... 1762
 JD Li, SS Choi, DM Vilathgamuwa, Nanyang Technological University, SINGAPORE

20.11 Active Commutated Thyristor CSI for Grid Connected Photovoltaic Applications 1767
 J.S. Siva Prasad, B.G. Fernandes, Indian Institute of Technology - Bombay, INDIA

Supplement

S.1 Novel Vector Control System using Deadbeat Controlled PWM Inverter with Output LC Filter 1772
 Yoshitaka Kawabata, Kazufumi Hirabayashi, Shinsuke Idenoue, Yoshinori Yamashita, Emenike Ejigou, Takao
 Kawabata, Ritsumeikan University, JAPAN

S.2 Variable Speed Constant Frequency Stand-alone Power Generator Using Wound-Rotor 1778
 Induction Machine
 Yoshitaka Kawabata, Toshihisa Oka, Emenike Ejigou, Takao Kawabata, Ritsumeikan University, JAPAN

S.3 A Novel Type of Utility-Interactive Inverter for Photovoltaic System .. 1785
 Yasuyuki Nishida and Naoyuki Aikawa, Nihon Univ JAPAN;
 Shinichiro Sumiyoshi, Hidekazu Yamashita, Hideki Omori, Matsushita Electric Industrial Co., Ltd., JAPAN
S.4 Design, Manufacture and Application of In-board Magnetic Devices .. 1791
 Yi E. Zhang, Vishay Siliconix Corporation U.S.A.; Seth R. Sanders, University of California, Berkeley U.S.A.
S.5 Analysis and Design of Magnetic Torque Couplers and Magnetic Gears ... 1799
 J. Rizk, M.H. Nagrial, A. Hellany, University of Western Sydney, AUSTRALIA
S.6 A Novel PT Design Concept of High Voltage RC-GCTs ... 1805
 C. L. Zhang, S. C. Kim, E. D. Kim, H. W. Kim, K. S. Seo, Korea Electrotechnology Research Institute, KOREA;

Author Index ... 1809