Fuel Cells for Secure, Sustainable Energy

ABSTRACTS

In Cooperation with

UNITED STATES
U.S. Department of Energy
U.S. Army Corps of Engineers
Advanced Technology Program
Environmental Protection Agency
EPRI
Federal Transit Administration
Gas Technology Institute
National Aeronautics and Space Administration
U.S. Fuel Cell Council

EUROPE
European Commission
Energy Research Centre of The Netherlands

JAPAN
Fuel Cell Development Information Center

November 3 - 7, 2003
Miami Beach, Florida
Fontainebleau Hilton Hotel

www.fuelcellseminar.com
Poster Session 1 "PEM Fuel Cells"

1kW Class PEFC System Using Internal Heating Fuel Processor - Fine Transient Response Ability for Residential Electricity Demands ... 1

72 kW Fuel Cell Powered Generator for Aircraft Ground Support ... 5
J. Gongola, T. Nergaard, O. Velev, AeroVironment, Inc., Monrovia, CA

A Progress Report on Enthalpy Wheel Humidifiers ... 9
R. DuBose, Emprise Corp., Kennesaw, GA

A Review of Advanced Power Technology Programs in the United States and Abroad Including Linked Mobile and Stationary Sector Developments ... 13
T. Lipman, G. Nemet, D. Kammen, UC Berkeley, Berkeley, CA, R. Friesen, California Stationary Fuel Cell Collaborative

Activities for a Residential PEFC co-Generation System ... 17
H. Horinouchi, N. Osaka, J. Miyake, M. Kawamura, T. Miura, K. Nishizaki, Tokyo Gas Co., Ltd., Tokyo, JAPAN

Advanced Experimental Diagnostics for PEFCs ... 21
M. Mench, Q. Dong, D. Burford, T. Davis, Penn State University, University Park, PA

Advanced Materials Technology Utilizing Glassy Metals For PEFC ... 25

An Experimental Evaluation of the Effects of Ripple Current Generated by the Power Conditioning Stage ... 29
W. Choi, G-B. Joung, J. Howze, P. Enjeti, Texas A&M University, College Station, TX

Battery and Fuel Cell Test and Evaluation Center ... 33
L. Joerisscn, J. Garche, J. Scholta, ZSW, Ulm, GERMANY

Characterization of Cell Hydration with Current Interruption Method ... 37
D. Lott, Avista Labs, Spokane, WA

Codes and Standards Activities for Stationary PEM Fuel Cell Systems in Japan ... 41
H. Kikuzawa, T. Ohmura, R. Yamaguchi, K. Nishikawa, M. Ohtsuka, Y. Morimoto, I. Tomihara, The Japan Gas Association, Tokyo, JAPAN
Computational Fluid Dynamics Modeling of PEM Fuel Cells 45
S. Li, U. Becker, B. Makarov, S. Orsino, Fluent Inc., Lebanon, NH

Computational Study of the Effect of Operating Conditions on Proton Exchange Membrane Fuel Cells .. 49
E. Blosch, S. Kumar, M. Showalter, N. Solanki, S. Mazumder, S. Lowry, CFD Research Corporation, Huntsville, AL

CO-Poisoning in Polymer Electrolyte Fuel Cells Studied by AC-Impedance Spectroscopy ... 53
F. Hajbolouri, B. Andreauss, G. Scherer, A. Wokaun, Paul Scherrer Institut, Villigen, SWITZERLAND

Development of a 300 W Air Cool Fuel Cell Stack in APFCT 57
A. Bo, H. Yang, M. Kao, D. Yang, Asia Pacific Fuel Cell Tech. Ltd, Anaheim, CA

Development of a Carbon Composite Bipolar Plate 61

Development of a Compact and High-Efficiency DME-Fueled Fuel Cell Reforming System ... 65

Development of a Compound Multi-Functional Fuel Cell Evaluation System ... 69
H. Okuda, A. Kusce, A. Mizugaki, ESPEC CORP., Osaka, JAPAN

Development of a New Electrolyte Membrane for PEM Fuel Cells 73

Development of Compact 1kW PEFC Stacks 77
H. Takahashi, S. Sekiguchi, S. Motomori, S. Kawate, Ishikawajima-Shibaura, Matsumoto, JAPAN, T. Ogawa, Y. Hishinuma, Hokkaido University, JAPAN

Development of Compact Reforming System for PEFC 81
I. Nakagawa, T. Kiyota, Y. Chida, T. Koike, Fuji Electric Co., Ltd., Ichihara, JAPAN

Development of Electrocatalyst for Unitized Regenerative Fuel Cell 85

Development of Fuel Cells in Armenia by H2 ECONomy 89

Development of PEFC Stacks for Stationary Application 93
M. Horiguchi, A. Kabasawa, M. Takahashi, Y. Enami, M. Aoki, Fuji Electric Co., Ltd., Ichihara, JAPAN
Durability of 3M MEAs Manufactured in a High-Speed Production Process
M. Hicks, D. Ylitalo, 3M, St. Paul, MN

Effect of Air Supply Conditions on Current Distribution in a PEMFC

Effect of Humidity on the Performance of PEMFC at Pressurized Conditions
F. Kagami, Y. Hishinuma, T. Chikahisa, T. Ogawa, Hokkaido University, Sapporo, JAPAN, H. Takahashi, Ishikawajima-Shibaura Machinery Co., LTD, Matsumoto, JAPAN

Effect of Metal Ion Contamination on the Properties of Membrane Electrolyte

Effect of Metal Ion Contamination on the Properties of Membrane Electrolyte

Evaluation of Different Flow Field Design and the Influence of Operational Parameters in the Performance of PEMFC
A. de Souza, E. R. Gonzalez, Universidade de Sao Paulo - Instituto de Quimica de Sao Carlos, Sao Carlos, BRAZIL

Experimental Evaluation and Computer Simulation of an Air-Breathing PEM Fuel Cell at Aircraft Flight Altitudes
J. Pratt, J. Brouwer, G. Samuelsen, National Fuel Cell Research Center, Irvine, CA

Experimental Studies of the Performances of PEM Fuel Cells with Interdigitated Flow Fields
L. Wang, H. Liu, Department of Mechanical Engineering, University of Miami, Coral Gables, FL

Experimental Study on the Effects of Compression on Various Gas Diffusion Layers for PEM Fuel Cells
A. Husar, J. Ge, A. Higier, G. Haberer, L. Wang, H. Liu, University of Miami Coral Gables, Coral Gables, FL

Fluorescence/Fiberoptic PEM Fuel Cell Thermometry
S. Allison, M. Cates, L. Maxey, T. McIntyre, D. Garvey, Oak Ridge National Laboratory, Knoxville, TN

Fuel Cell Environmental Life Cycle Assessment: A Progress Report
C. Lee, G. Huffman, U.S. Environmental Protection Agency, Cincinnati, OH, S. Narayanan, California Institute of Technology, Pasadena, CA

Fuel Cell Reformer and Stack Durability
R. Borup, M. Inbody, D. Guidry, S. Pacheco, J. Tafoya, Los Alamos National Laboratory, Los Alamos, NM

Fuel Cell System Dynamics and Feasibility Study of a PEMFC Scooter
C-W. Hong, P-H. Lin, Y-H. Hung, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, TAIWAN

Fuel Cells as Aviation Battery Replacements
Further Improvement of CO-Tolerant Catalyst in TKK ... 146
M. Inoue, T. Tada, Y. Yamamoto, Tanaka Kikinzoku Kogyo K.K., Hiratsuka, JAPAN

High Speed Plate Manufacturing with Advanced Injection Molding Materials 150
J. Braun, Teledyne Energy Systems, Inc., West Palm Beach, FL

Impedance Spectroscopy as a Differentiate in situ Characterisation Technique for Polymer-Electrolyte-Membrane Fuel Cells ... 154
V. Graf, M. Quintus, F. Finsterwalder, G. Frank, DaimlerChrysler AG, Ulm, GERMANY

In Situ Diagnostic Methods for Polymer Electrolyte Fuel Cells 157
G. Scherer, B. Andreaus, D. Kramer, A. Geiger, H. Kuhn, A. Wokaun, Paul Scherrer Institut, Villigen, SWITZERLAND

Locally Resolved Electrochemical Impedance Spectroscopy... 161
E. Güzow, T. Knöri, N. Wagner, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik, Stuttgart, GERMANY

Measuring Conductivities in PEFC Composite Electrodes: Geometrical and Compositional Limitations ... 165
A. Saab, Los Alamos National Laboratory, Los Alamos, NM

Modeling of Water Behavior in the Gas Diffusion Media of PEMFC 168

Modular Organisation for PEMFC System Simulation Model 171
S. Page, S. Krumdieck, University of Canterbury, Christchurch, NEW ZEALAND, A. Anbury, Powerware, Christchurch, NEW ZEALAND

New Design and Experimental Studies of a Gas Diffusion Layer with Water mManagement Function for PEMFC ... 175
J. Chen, T. Matsuura, M. Hori, Department of Mechanical Engineering, Daido Institute of Technology, Nagoya, JAPAN

New Dynamic Method to Evaluate the Performance of Fuel Cell in the Presence of Contaminants ... 179
S. Jiménez, L. Daza, Instituto de Catálisis y Petroquímica (CSIC), Madrid, SPAIN, J. Soler, R. Valenzuela, CIEMAT, Madrid, SPAIN

Numerical Simulation of the Performance of Proton Exchange Membrane Fuel Cells ... 183
S-H. Chan, Yuan Ze University, Chung-Li, Taoyuan, TAIWAN, T. Tong, M. Abou-Ellail, George Washington University, Washington, DC, K. Beshay, Cairo University, Cairo, EGYPT

Optimal Water and Thermal Management in PEM Fuel Cells 187
J. Xu, M. Hussaini, Florida State University, Tallahassee, FL

Passive Two-Phase Cooling of PEM Fuel Cells ... 191
P. Tuma, 3M, St. Paul, MN

Performance of Aerospace, PEM Fuel Cell Breadboard Power Plant 193
M. Fuchs, S. Ibrahim, J. Braun, Teledyne Energy Systems, Inc., West Palm Beach, FL, M. Hobreicht, NASA, Glenn Research Center, Cleveland, OH
Polyoxometalates as Electrocatalyst Materials for Fuel Cells

Preparation and Evaluation of a New Proton Conductive Film Comprising an Acid Polymer and a Base Polymer
M. Umeda, M. Kamada, A. Yamada, Nagaoka University of Technology, Nagaoka, JAPAN, I. Uchida, Tohoku University, Sendai, JAPAN

Preparation of Fine Pt0.5Ru0.5/C Catalyst Through a Simple Procedure Using Alcohol Reduction for Fuel Cell Application
I-S. Lee, S-W. Hwang, D-Y. Lee, Division of Materials Science and Engineering, Korea University, Seoul, Republic of KOREA

Properties of Graphite-Polymer Composites for PEFC Separators
T. Mitani, T. Hayashi, F. Miyamoto, Advanced Technology R & D Center, Mitsubishi Electric Corporation, Amagasaki, JAPAN

Quantum Molecular Dynamics Study for Novel PEMFC Alloy Catalyst
K. Okazaki, R. Jinnouchi, R. Kokubu, Tokyo Institute of Technology, Meguro-ku, JAPAN

Reaction and Flow Analysis for Polymer Electrolyte Fuel Cell
G. Inoue, Y. Matsukuma, M. Minemoto, Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, JAPAN

Regenerative PEM Fuel Cell Auxiliary Power Units and Their Use in The Military
A. Rusta-Sallchy, D. G. Frank, J. Cargnelli, J. Goodhand, Hydrogenics Corporation, Mississauga, Ontario, CANADA

Scale-Up of Carbon/Carbon Composite Bipolar Plates - Elimination of Cost Barriers
R. Torre, D. Haack, K. Butcher, Porvair Fuel Cell Technology, Hendersonville, NC

Study on Improvement of Durability of Polymer Electrolyte Fuel Cell
Y. Ikoma, S. Sakamoto, S. Suzuki, M. Karakane, Y. Itoh, K. Takizawa, SANYO Electric Co., Ltd., Ora-Gun, JAPAN

Study on the Hydrocarbon-based Polymer Electrolyte Membranes for Fuel Cells
T. Kobayashi, H. Honbou, M. Morishima, T. Kamo, Hitachi Research Laboratory, Hitachi-shi Ibaraki-ken, JAPAN

Synthesis and Characterization of Sulfonated Poly(phthalazinone)s for Proton Exchange Membrane Materials
Y. Gao, G. Robertson, M. Guiver, ICPET, NRC, Ottawa, ON, CANADA, X. Jian, Dalian University of Technology, Dalian, People's Republic of CHINA, S. Mikhailenko, K. Wang, S. Kaliaguine, Laval University, Quebec, QC, CANADA

TEM Characterization of PEMFC MEAs
D. Blom, L. Allard, Oak Ridge National Laboratory, Oak Ridge, TN, J. Xie, Los Alamos National Laboratory, Los Alamos, NM
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Integrated Approach at Modeling and Mitigating SOFC Thermomechanical Failure</td>
<td>288</td>
</tr>
<tr>
<td>C. Haynes, J. Qu, A. Fedorov, Georgia Tech, Smyrna, GA</td>
<td></td>
</tr>
<tr>
<td>An Investigation to Resolve the Interaction Between SOFC Module, PES and Balance-of-Plant During Transient Conditions</td>
<td>292</td>
</tr>
<tr>
<td>C. Haynes, Georgia Tech, Smyrna, GA</td>
<td></td>
</tr>
<tr>
<td>Analyses on the Performance of Anode-Supported SOFC Stacks</td>
<td>295</td>
</tr>
<tr>
<td>H. Yakabc, T. Sakurai, Tokyo Gas, Minato-ku, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Camber Control in Anode Supported Solid Oxide Fuel Cell Fabrication</td>
<td>299</td>
</tr>
<tr>
<td>V. Sprenkle, K. Meinhardt, E. Canfield, S. Simmer, Y-S. Chou, J. Bonnett, B. Tomlinson, L. Chick, Pacific Northwest National Laboratory, Richland, WA</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide Reforming for Small SOFCs</td>
<td>303</td>
</tr>
<tr>
<td>Characterization of Catalysts for Low Temperature Fuel Cells with Chemisorption, Temperature Programmed Reduction and Oxidation Measurements</td>
<td>307</td>
</tr>
<tr>
<td>M. Schulze, E. Gülzow, G. Steinhilber, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik, Stuttgart, GERMANY</td>
<td></td>
</tr>
<tr>
<td>Commercialization of Direct Oxidation SOFC</td>
<td>311</td>
</tr>
<tr>
<td>Compliant Seals for Potential Use in Planar Solid Oxide Fuel Cells</td>
<td>314</td>
</tr>
<tr>
<td>K. Weil, J. Hardy, Pacific Northwest National Laboratory, Richland, WA</td>
<td></td>
</tr>
<tr>
<td>Design and Performance of a Monolithic Solid Oxide Fuel Cell Stack</td>
<td>318</td>
</tr>
<tr>
<td>P. Thoen, N. Sullivan, B. Barker, ITN Energy Systems, Littleton, CO</td>
<td></td>
</tr>
<tr>
<td>Development of 300kW Class MCFC Compact System</td>
<td>321</td>
</tr>
<tr>
<td>N. Mugitani, Technology Research Association for MCFC Power Generation System, Kawagoc, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Development of a 300 W Direct Methanol Fuel Cell Based Power Source</td>
<td>325</td>
</tr>
<tr>
<td>T. Valdez, S. Narayanan, A. Kindler, G. Klose, P. Shakkottai, J. Gittens, S. Surampudi, Jet Propulsion Laboratory, Pasadena, CA</td>
<td></td>
</tr>
<tr>
<td>Development of a 40W Direct Methanol Fuel Cell Stack</td>
<td>328</td>
</tr>
<tr>
<td>Development of a Completely Passive Micro Direct Methanol Fuel Cell for Portable Applications</td>
<td>332</td>
</tr>
<tr>
<td>Y. Cao, Z. Guo, Florida International University, Miami, FL</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Development of Anode-Supported Flat Tube Cell Stack</td>
<td>336</td>
</tr>
<tr>
<td>Development of Ceramic Composites as SOFC Anodes</td>
<td>340</td>
</tr>
<tr>
<td>O. Marina, M. Walker, J. Stevenson, Pacific Northwest National Laboratory, Richland, WA</td>
<td></td>
</tr>
<tr>
<td>Development of MEA Technology for DMFC Applications</td>
<td>344</td>
</tr>
<tr>
<td>H. Dziallas, C. Eickes, J. Koehler, M. Vogt, UMICORE AG & CO. KG Fuel Cells, Hanau, GERMANY</td>
<td></td>
</tr>
<tr>
<td>Development of MOLB Type SOFC</td>
<td>348</td>
</tr>
<tr>
<td>A. Nakanishi, M. Hattori, Y. Sakaki, Electric Power Research & Development Center, Chubu Electric Power Company, Inc., Nagoya, JAPAN, H. Miyamoto, Takasago Research & Development Center, Mitsubishi Heavy Industries, Ltd., Takasago, JAPAN, K. Takenobu, M. Nishiura, Kobe Shipyard and Machinery Works, Mitsubishi Heavy Industries, Ltd., Kobe, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Development of PAFC Power System Using Biogas</td>
<td>352</td>
</tr>
<tr>
<td>T. Kiyota, I. Nakagawa, M. Hascgawa, H. Miwa, Fuji Electric Co., Ltd., Ichihara, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Direct Conversion of Reactive Carbons in a Carbon/Air Cell</td>
<td>356</td>
</tr>
<tr>
<td>J. Cooper, T. Tillotson, L. Hrubesh, R. Krueger, J. Wilson, J. Ziagos, Lawrence Livermore National Laboratory, Livermore, CA</td>
<td></td>
</tr>
<tr>
<td>Durability Test of Direct Methanol Fuel Cell</td>
<td>359</td>
</tr>
<tr>
<td>S. Lee, J. Kim, C. Pak, H. Kim, K. Choi, H. Chang, Samsung Advanced Institute of Technology, Suwon, Republic of KOREA</td>
<td></td>
</tr>
<tr>
<td>Electric Power Quality in Distributed Generation Systems: A Fuel Cell Case Study</td>
<td>363</td>
</tr>
<tr>
<td>G. Paulillo, F. Garcia, M. Cantão, P. Impinnisi, Instituto de Tecnologia para o Desenvolvimento - LACTEC, Curitiba, BRAZIL</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Long-Term Reliability for MCFC Stack/Cell</td>
<td>367</td>
</tr>
<tr>
<td>Y. Izaki, F. Yoshiba, K. Asano, M. Kawase, H. Morita, M. Yoshikawa, Y. Mugikura, T. Watanabe, Crye, Yokosuka, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Fabrication of Anode Supported Cells with a ScSZ Electrolyte as Intermediate Temperature SOFCs with HC Fuels</td>
<td>371</td>
</tr>
<tr>
<td>K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, H. Yokokawa, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, JAPAN</td>
<td></td>
</tr>
<tr>
<td>Fuel Cell Gas Turbine Hybrid System Startup and Speed Control Simulation</td>
<td>375</td>
</tr>
<tr>
<td>Fuels Issues Associated with Direct Oxidation Solid Oxide Fuel Cells</td>
<td>376</td>
</tr>
<tr>
<td>Full Oxide Anode Development at ECN</td>
<td>380</td>
</tr>
<tr>
<td>B. Rietveld, G. Van Druten, J. Ouweijes, P. Nammensma, Energy Research Centre of the Netherlands (ECN), Petten, NETHERLANDS</td>
<td></td>
</tr>
</tbody>
</table>
Grafting of Styrene onto Nafion Membranes Using Supercritical CO2

Impregnation for DMFCs .. 384
J. Sauk, J. Byun, H. Kim, School of Chemical Engineering & Institute of Chemical Processes, Seoul National University, Seoul, Republic of KOREA

Improved Sinterability and Performance of Lanthanum Ferrite SOFC Cathodes 388
S. Simner, J. Stevenson, J. Bonnett, M. Anderson, Pacific Northwest National Laboratory, Richland, WA

Influence of the Stack Pressure on a Water Cooled PAFC Electrode Plates
Transient Current Density Distributions and an Evaluation of a Developed Three
Dimensional Simulation of the Transient Current Density .. 392
R. Ridha, Heinens Inc., Warrensville Hts., OH

Internal Electrocatayltic Reforming Carbon Dioxide by Methane in SOFC
System .. 396
D. Moon, J. Ryu, S. Nam, S. Lee, Korea Institute of Science & Technology, Seoul, Republic of KOREA

Investigation of Humidification Effects on the Performance of Direct Methanol
Fuel Cells .. 400

Investigation of Oxidation-Resistant Alloy Interconnects for Use in Planar SOFC Stacks .. 404
Z. Yang, M. Walker, P. Singh, J. Stevenson, Pacific Northwest National Laboratory, Richland, WA

Investigation of the Water Management in Low Temperature Direct Methanol
Fuel Cells .. 408
M. Stummers, J. Hervás Martines, L. Wiese, M. Scholz, M. Rzepka, ZAE Bayern Department, Garching, GERMANY, V. Masi, C. Cremer, U. Stimming, TU München Department of Physics 19, Garching, GERMANY

Low cost ETFE-based grafted membranes for application as alternative
electrolyte in direct methanol fuel cells ... 412

Materials for Low Temperature Solid Oxide Fuel Cells Fabricated Using
Combustion Chemical Vapor Deposition ... 416
R. Marie, J. Roller, M. Oljaca, MicroCoating Technologies, Atlanta, GA

MCFC Porous Components: The Raw Material Influence on Their Final
Properties ... 420
A. Sabattini, E. Bergaglio, P. Capobianco, B. Passalacqua, Ansaldo Fuel Cells SpA, Genova, ITALY

MCFCs' Enhanced Multifuel Capability for Stationary Applications. The
TWINSTACK® Original Configuration .. 424
B. Marcenaro, Ansaldo Fuel Cells SpA, Genova, ITALY
Medium Temperature Half-Cells for SOFCs
G. Nurk, P. Möller, I. Kivi, S. Kallip, A. Jänes, E. Lust, Institute of Physical Chemistry, University of Tartu, Tartu, ESTONIA

Metal Supported IT-SOFCs for Operation at 500-600°C
G. Lewis, N. Brandon, S. O'Dea, B. Steele, Ceres Power, Crawley, UNITED KINGDOM

Modeling of SOFC Stacks in Transition from Startup to Steady State Operation at PNNL
K. Recknagle, J. Deibler, M. Khalcel, Pacific Northwest National Laboratory, Richland, WA

NiO-YSZ Anodes with High Stability for SOFC
K. Lee, D. Seo, S. Woo, Korea Institute of Energy Research, Daejeon, Democratic People's Republic of KOREA

Numerical Modeling of an Internal Reforming SOFC
E. Greene, W. Chiu, University of Connecticut, Storrs, CT, M. Medeiros, Naval Undersea Warfare Center Division Newport, Newport, RI

Overcoming High Common Mode Voltage Problems During Fuel Cell Testing
J. Aitchison, Advanced Measurements, Calgary, AB, CANADA

Performance Interpretation of Anode Electrode for Direct Methanol Fuel Cell at Low Stoichiometry Fuel Flow
J. Kim, S. Lee, K. Choi, H. Chang, Samsung Advanced Institute of Technology, Suwon, Republic of KOREA

Performance of Direct Dimethyl-ether Fuel Cell

Phlogopite Mica-Based Compressive Seals for SOFC
Y-S. Chou, J. Stevenson, Pacific Northwest National Laboratory, Richland, WA

Polyphosphate Composite Membrane Based Intermediate Temperature Direct Methanol Fuel Cell
S. Warth, H. Tu, T. Uma, C. Cremers, U. Stimming, TU München Department of Physics E19, Garching, GERMANY

Portable Direct Methanol Fuel Cell System Components and Integration
C. Martin, J. Martin, Mesoscopic Devices, Broomfield, CO

PVDF-HFP/p-Sulfonate-Phenolic DMFC Membrane by In-Situ Synthesis
P-J. Chu, C-S. Wu, National Central University, Department of Chemistry, Chung-Li, TAIWAN, J-Y. Chen, Industrial Technology Research Institute, Material Research Laboratory, Hsin-Chu, TAIWAN
Regulations Regarding Transportation of Portable Fuel Cell Devices in Aircrafts and Other Mass Transportation Systems .. 478
E. Ubong, Kettering University, Flint, MI

Sealing Metallic and Ceramic Components in Planar Solid Oxide Fuel Cells 482
K. Weil, C. Coyle, J. Hardy, J. Kim, G. Xia, Pacific Northwest National Laboratory, Richland, WA

Ship Service Fuel Cell Power Plant Development ... 486

Sol-Gel as a Method for Preparing Catalytic Oxides Used in Anodes on Direct Ethanol Fuel Cell Systems .. 490
M. Caires, R. Sartori, FINEP/FIPAI/University of Sao Paulo, Sao Carlos, BRAZIL, A. Ferreira, UniTech Ltd.

Status of the TMI SOFC System Technology .. 494
B. Lee, M. Petrik, R. Ruhl, C. Milliken, Technology Management, Inc., Cleveland, OH

Structural and Morphological Properties of Porous Nickel MCFC Cathodes Coated by Co3O4 Formed by Potentiostatic Deposition in Aqueous Media 498
M. Escudero, L. Daza, Instituto de Catálisis y Petroleoquímica (CSIC) - CIEMAT, Madrid, SPAIN, L. Mendoza, M. Cassir, Ecole Nationale Supérieure de Chimie de Paris, Paris, FRANCE

Surface-Modified Ferritic Interconnect Materials for Solid Oxide Fuel Cells 502
B. Lanning, J. Arps, R. Wei, Southwest Research Institute, San Antonio, TX

System Analysis of a Fully Integrated Biomass SOFC-Gasifier 503
P. Hutton, N. Patel, Energy & Environmental Research Center, Grand Forks, ND

Tailored Electrodes for Intermediate Temperature SOFC Applications 506
M. Seabaugh, K. Hasinska, R. Cooley, S. Swartz, NexTech Materials, Ltd., Worthington, OH

The Development of a 1 kW Direct Methanol Fuel Cell System 510
A. Kindler, T. Valdez, S. Narayanan, Jet Propulsion Laboratory, Pasadena, CA

The Effect of Interfaces on Polymer Electrolyte Fuel Cell Properties 514
Y. Kim, B. Pivovar, Los Alamos National Laboratory, Los Alamos, NM

The Effect of Oxygen Flow Rate on GDC Thin Films Deposited by RF Sputtering for Solid Oxide Fuel Cells Operating at Low Temperatures 518
T. Nguyen, D. Sood, School of Electrical and Computer Engineering, Royal Melbourne Institute of Technology University, Victoria, AUSTRALIA, K. Fogcr, J. Love, Ceramic Fuel Cells Limited, AUSTRALIA

Understanding the Corrosion Behavior of Chromia-Forming 316L Stainless Steel in a Dual Oxidizing-Reducing Environment Representative of SOFC Interconnect 522
Poster Session 3 "Fuels, Hydrogen and Fuel Processing"

"AMONCO" - Biogas Fuel Cells

A Reformate-Based PEM Fuel Cell Power Plant Employing a Novel Energy Recovery System for Fuel Processing
Y. Cao, M. Abarca, Florida International University, Miami, FL

Ammonia as Hydrogen Source for an Alkaline Fuel Cell-Battery Hybrid System
K. Kordesch, M. Cifrain, G. Koscher, G. Faleschini, T. Hejze, V. Hacker, University of Technology, Graz, AUSTRIA

ATR Catalyst for Natural Gas Conversion: Performance, Simulation, and Modeling
F. Baumann, M. Duisberg, S. Wieland, G. Sextl, Umicore AG & Co. KG, Hanau, GERMANY, O. Deutschmann, Institute for Chemical Technology, University of Karlsruhe, Karlsruhe, GERMANY, L. Schmidt, University of Minnesota, Chemical Engineering & Materials Science, Minneapolis, MN

Autothermal Reforming of Military Logistic Fuel (NATO F-76): Performance Comparison Between Monolith and Pellet Catalyst Beds
M. Perna, M. Scotto, M. Kantak, J. Budge, SOFCo - EFS Holdings, LLC, Alliance, OH, B. Ryan, SOFCo - EFS Holdings, LLC, Lynchburg, VA

Biogas - MCFC Systems as a Challenge for Sustainable Energy Supply
S. Trogisch, Profactor Produktionsforschung GmbH, Steyr, AUSTRIA J. Hoffmann, R. Valenzuela, CIEMAT, Madrid, SPAIN, L. Daza, Instituto de Catálisis y Petroquimica (CSIC), Madrid, SPAIN

Catalyst Development for Hydrogen Production via Autothermal Reforming of Natural Gas
A. Wagner, J. Wagner, Süd-Chemie Inc., Louisville, KY

Catalytic Membrane Reactors for Fuel Cell Applications
C. Krucgcr, Hy9 Corp., Medford, MA, J. Wagner, Süd-Chemie Inc., Louisville, KY

Catalytic Partial Oxidation (CPOX) Reformer for C1-C4 Commercial Fuels: Scale-up and Testing
M. Kantak, M. Perna, J. Budge, SOFCo - EFS Holdings, LLC, Alliance, OH

Ceria-Based Water-Gas-Shift Catalysts

Compact Fuel Cell Systems for Soldier Power
Compact Hybrid PEMFC Power Supplies Fueled by Methanol Reforming 567
Battelle Pacific Northwest Division, Richland, WA

Continuously Regenerating Fuel Desulfurization System ... 571
J. Poshusta, E. Schneider, J. Martin, Mesoscopic Devices, Broomfield, CO

Defect-Free Zeolite Thin Film Membranes for H2 Separation and Isolation 574
T. Nenoff, M. Welk, Sandia National Laboratories, Albuquerque, NM

Design and Development of a Fuel Cell and Heat Pump CHP System .. 578

Development of 5-kW Class Multi-Fuel Processor for Fuel Cell Vehicles 582
S-A. Hong, S-W. Nam, S. Kong, J. Han, S. Yoon, T-H. Lim, Korea Institute of Science &
Technology, Seoul, Republic of KOREA

Development of a Diesel Fuel Processor for PEM Fuel Cells ... 586
Q. Ming, T. Dickman, A. Lee, R. Stephens, InnovaTek, Richland, WA

Development of ATSR ... 590
J. Ono, Y. Tomizawa, T. Kuwabara, S. Maruko, Y. Yoshino, Toyo Radiator CO., LTD, Hadano,
JAPAN

Development of Chemical Sensors for PEM and SOFC Systems .. 594

Development of Kerosene Fuel Processing System for Stationary PEMFC 598
K. Saito, T. Fukunaga, H. Katsuno, H. Matsumoto, T. Seimiya, Idemitsu Kosan Co., Ltd., Chiba,
JAPAN, O. Takahashi, Idemitsu Kosan Co., Ltd., JAPAN

Development of Membrane Reformer for Hydrogen Production from Natural
Gas .. 602
Gas Association, Tokyo, JAPAN

Development of Microchannel Fuel Processor .. 606
Research Center, Korea Institute of Energy Research, Daejeon, Republic of KOREA

Development of Catalysts for Kerosene Fuel Processor for PEM-FC Systems 610
A. Segawa, T. Matsumoto, K. Ishizuki, Y. Kobori, Fuel Cell Research Department, Nippon Oil
Corporation, Yokohama, JAPAN, Y. Sato, M. Adachi, Fuel Cell Testing Department, Nippon Oil
Corporation, JAPAN

Distributed Generation Exploiting Industrial Gases by Means of Fuel Cells 614
J. Brey, A. Castro, C. Garcia, Hynergrecn Technologies, Sevilla, SPAIN

Electrooxidation of Ethanol Using PtRu/C Electrocatalyst Prepared from a Single
Source Molecular Precursor ... 617
M. Linardi, A. Oliveira Neto, E. Spinacè, IPEN - Instituto de Pesquisas Energéticas e Nucleares,
São Paulo, BRAZIL
Evaluation of Hydrogen Technologies on the Basis of the Four-Sector Benefit Diagram
C. Giannantoni, A. Moreno, ENEA, S. Maria di Galeria (Rome), ITALY, S. Ulgiati, University of Siena, Siena, ITALY

Evaluation of Partial Oxidation Fuel Cell Reformer Emissions
S. Fable, S. Unnasch, L. Waterland, TIAx LLC, Cupertino, CA

Fuel Cell/Photovoltaic Hybrid System for Remote Operation
T. Ruberti, IdaTech, LLC, Bend, OR

Fuel Processing Microreactors for Hydrogen Production in Micro Fuel Cell Applications
A. Pattekar, M. Kothare, Integrated Microchemical Systems Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA

Fuel-Flexible H2-Reformer Using Advanced Thermoelectric Technology
C. Wang, H. Huang, Wangtec Inc., Woodridge, IL

S. Lynch, L. Callaghan, M. D'Amico, Northeast Advanced Vehicle Consortium, Boston, MA

High Performance Water Gas Shift Catalysts for Fuel Cell Powered Vehicles Applications
D. Moon, J. Ryu, B. Lee, B. Ahn, Korea Institute of Science & Technology, Seoul, Republic of KOREA, S. Hong, Korea University, Seoul, Republic of KOREA

Humidification of Fuel Gases Using a Nafion Moisture Exchange Device
D. Leighty, C. Dubois, Perma Pure LLC, Toms River, NJ

Hydrogen Production by Bioethanol Steam Reforming to be Applied in PEMFC
M. Benito, J. Sanz, R. Isabel, L. Daza, Instituto de Catálisis y Petroleoquímica (CSIC), Madrid, SPAIN, J. Brey, Hynergren, Sevilla, SPAIN

Hydrogen Production from Heavy Hydrocarbons Using a Fuel Processor with Micro-Structured Components
P. Irving, T. Moeller, Q. Ming, A. Lee, InnovaTek, Richland, WA

Improved Solutions for the Removal of Sulphur from Natural Gas
H. Wessel, M. Hoelzle, BASF AG, Ludwigshafen, GERMANY, N. Wilden, WINGAS GmbH, Kassel, GERMANY, D. Artrip, BASF Corporation, Houston, TX

Innovative Gold-Based Catalysts in Hydrogen Processing and Fuel Cell Systems
C. Corti, R. Holliday, D. Thompson, World Gold Council, London, UNITED KINGDOM, D. Cameron, The Interact Consultancy, Reading, UNITED KINGDOM

Investigation of the Change of the Hydrophobic Behavior of Electrodes for Low Temperature Fuel Cells
M. Schulze, E. Gülzow, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik, Stuttgart, GERMANY
Kilowatt-Scale Auto-Thermal Gasoline Reformer for Mobile Applications .. 668

Legislative and Regulatory Developments Regarding the Utilization of Hydrogen in Fuel Cell Vehicles ... 672
R. Goodstein, Air Products and Chemicals, Washington, DC

Methanol: The Consumer-Friendly Hydrogen Source ... 676
G. Dolan, Methanol Institute, Washington, DC

New Innovative Catalysts for Fuel Processors ... 680
M. Hoelzle, H. Wessel, C. Kuhrs, M. Hesse, BASF AG, Ludwigshafen, GERMANY, D. Artrip, BASF Corporation, Houston, TX

Optimized Mixture Formation for Fuel Processors ... 684

Performance Test Results Of Advanced Internal Heating Fuel Processor For 1kw PEFC Power Generation Unit .. 688
T. Miyata, S. Ikeda, Y. Arimitsu, Y. Iwasaki, Babcock-Hitachi K.K., Kurashiki, JAPAN

Plasma Reforming of Heavy Fuels .. 692
H. Jabs, S. Shandy, D. Westerheim, A. Cisar, Z. Minevski, Lynntech, Inc., College Station, TX

Portable Petroleum Distillate Fuel Preprocessor and Reformer for Fuel Cell Applications .. 696

M. Balakos, D. Rogers, J. Wagner, Sud-Chemie Inc., Louisville, KY

Preferential Oxidation of CO in Hydrogen Rich Stream Over Cobalt Promoted Cu-Ce /Al2O3 Catalysts .. 704
W. Yoon, Korea Institute of Energy Research, Daejeon, Republic of KOREA, J. Park, Y. Rhee, Chungnam National University, Daejeon, Republic of KOREA, J. Jeong, Kyungpook National University, Daegu, Republic of KOREA

Project RES2H2 as a Demonstration of the Integration of Renewable Energy Sources with the "Hydrogen Vector" .. 708
A. Castro, J. Brey, E. Moreno, Hynergygreen Technologies, Sevilla, SPAIN

PrOx Carbon Monoxide Measurement and Control for Transient and Rapid Start Response ... 711
M. Inbody, R. Borup, J. Tafoya, Los Alamos National Laboratory, Los Alamos, NM
Reforming Bio-Ethanol to Produce Renewable Hydrogen
J. Brey, B. Sarmiento, Hynergren Technologies, Sevilla, SPAIN, M. Benito, L. Daza, J. Sanz, ICP - CSIC, Madrid, SPAIN

Steam Reforming of Dimethyl Ether and Methanol: Feasibility and Comparative Study
T. Semelsberger, R. Borup, M. Inbody, J. Tafoya, D. Guidry, Los Alamos National Laboratory, Los Alamos, NM

Study to Determine Fast-Start Capability
S. Ahmed, R. Ahluwalia, S. Lee, Argonne National Laboratory, Argonne, IL

Techniques For Pore Structure Characterization of Fuel Cell Components Containing Hydrophobic and Hydrophilic Pores

The Development of Hydrogen Storage Canister
Y-S. Hsu, C-L. Wu, F-H. Hsiao, Asia Pacific Fuel Cell Technologies, Ltd., Miaoli, TAIWAN

The Governments Role in Demonstrating Hydrogen Technologies

The Use of Graphite Foam for Thermal Management in On-Board Fuel Reforming Processors (FASTER)
A. McMillan, G. Romanoski, J. Klett, Oak Ridge National Laboratory, Oak Ridge, TN

Use of Activated Carbons for the Removal of Sulfur Impurities from Gas Streams
X. Wu, A. Kercher, B. Hathorn, N. Gallego, S. Overbury, W. Shelton, T. Armstrong, Oak Ridge National Laboratory, Oak Ridge, TN

Ztek's Hydrogen/Electricity Co-production System
M. Hsu, Ztek Corporation, Woburn, MA

Session 1A "The Global View"

Fuel cell and Hydrogen Research in the European Union
A. Perez Sainz, European Commission, Brussels, BELGIUM

Fuel Cell Commercial Potential: The Case of the UK
A. Chase, D. Hart, A. Bauen, E4tech (UK) Ltd, London, UNITED KINGDOM

Fuel Cell Research, Development, and Demonstration Activities in Singapore

Fuel Cells – The DOE Fossil Energy Program
J. Strakey, M. Williams, U.S. DOE, National Energy Technology Laboratory, Morgantown, WV

The FreedomCAR and Hydrogen Fuel Initiative
Session 1B/1C "PEMFC R&D 1 (Systems/High Temperature Membranes)"

Development of Asahi Kasei Aciplex-S Membrane for High Temperature Operation ... 764
T. Ota, M. Wakizoe, Asahi Kasei Corporation, Kawasaki City, JAPAN, T. Kodani, Asahi Kasei Corporation, Chiyoda-ku, JAPAN

High Temperature Membranes for PEM Fuel Cells ... 768
T. Zawodzinski, Case Western Reserve University, Cleveland, OH, N. Garland, U.S. Department of Energy, Washington, DC

On the Efficiency of PEM Fuel Cell Systems and Fuel Processors ... 770
A. Feitelberg, Plug Power, Latham, NY

PEM Fuel Cell Programs at UTC Fuel Cells ... 774
D. Wheeler, T. Clark, S. Motupally, UTC Fuel Cells, LLC, South Windsor, CT

Preliminary Investigation into the Use of Bi-sulfate and Bi-phosphate Based Room Temperature Ionic Liquids as High Temperature Conducting Membrane Materials for Fuel Cell Applications ... 778

Technology Foundations for Product Development ... 782
J. Cross III, Nuvera Fuel Cells, Cambridge, MA

Session 2A "SOFC R&D 1"

Applying a Critical Path Approach to the Commercialization of Planar SOFC Technology ... 786
B. Borglum, E. Neary, Global Thermoelectric Inc, Calgary, Alberta, CANADA

Design Aspects of a 250 kW NG Fuelled SOFC System - Strategies to Counteract Stack Performance Degradation 790

Development and Characterization of Vacuum Plasma Sprayed SOFC for Stationary and Mobile Application ... 794
M. Lang, T. Franco, R. Henne, G. Schiller, P. Szabo, S. Ziehm, German Aerospace Center, Institut for Technical Thermodynamics, Stuttgart, GERMANY

Development Status of ITN Energy Systems’ 2,000 W-hr/kg SOFC Palm-Power System ... 798

Effect of Internal Reforming on the Stress Distribution in Solid Oxide Fuel Cell (SOFC) Stacks ... 800
Recent Advances in SOFC Development at PNNL .. 804
P. Singh, J. Stevenson, M. Khaleel, G. McVay, Pacific Northwest National Laboratory,
Richland, WA

Solid Oxide Fuel Cell Operation by Internal Partial Oxidation of Propane 808
Z. Zhan, S. Barnett, Northwestern University, Evanston, IL

Session 2B "PEMFC R&D 2 (MEAs)"

Activities of Low Pt Loading, Carbon-Less, Ultra-Thin Nanostructured Film-
Based Electrodes for PEM Fuel Cells and Roll-Good Fabricated MEA

Performances in Single Cells and Stacks .. 812
M. Debe, A. Steinbach, K. Lewinski, G. Haugen, G. Vernstrom, R. Atanasoski, A. Hester, P. Turner,
R. Ziegler, J. Larson, M. Hicks, P. Serim, 3M Company, St. Paul, MN

Advanced MEA Technology for Hydrogen and Reformate Application 816
J. Koehler, M. Vogt, M. Lopez, G. Sextl, S. Wieland, Umicore AG & Co. KG, Hanau-Wolfgang,
GERMANY, R. Privette, Umicore Corp., Auburn Hills, MI

Development of Advanced MEA Technologies with Fluoropolymers for PEFC at
Asahi Glass Co., Ltd .. 820
K. Yamada, Y. Kunisa, M. Tsushima, M. Kawamoto, Y. Takimoto, J-I. Tayanagi, M. Yoshitake,
Asahi Glass Co. Ltd., Yokohama, JAPAN

Differentiated Membranes and Dispersions for Commercial PEM Fuel Cell and
Electrolysis Systems .. 824
D. Lousenberg, T. Henry, D. Curtin, M. Tisack, P. Tangeman, DuPont - Fayetteville Works,
Fayetteville, NC

MEA Improvements for Sub-humidified Fuel Cell Operation 828
E. Teather, DuPont Fuel Cells, Wilmington, DE, J. Staser, Case Western Reserve University

New MEAs for Low Cost System Design ... 832
S. Cleghorn, J. Kolde, R. Reid, O. Teller, Gore Fuel Cell Technologies, Elkton, MD

Session 3A/3B "SOFC R&D 2/ SOFC Hybrids"

Low Temperature Solid Oxide Fuel Cells Based on Stable High Conductivity
Bilayered Electrolytes ... 836
E. Wachsman, K. Duncan, University of Florida, Gainesville, FL

Modelling and Performance Simulation of High Temperature Fuel
Cell/Microturbine Systems ... 840
E. Entchev, CANMET Energy Technology Centre, Ottawa, Ontario, CANADA

MW-Class Hybrid Power System Based on Planar Solid Oxide Stack Technology... 844
Seattle, WA

Simulation-Based Comparison of Combined SOFC/GT Cycles with Flat-Plate
and Tubular Fuel Cell Models ... 848
C. Stiller, Ø. Mathisen, S. Seljebo, O. Bolland, H. Karoliussen, B. Thorud, Norwegian University of
Science and Technology, Trondheim, NORWAY
Solid Oxide Fuel Cell Stack for Auxiliary Power Units: A Development Update 852

The U.S. Department of Energy National Energy Technology Laboratory's Hybrid Power Systems Program 856
R. Dennis, M. Williams, N. Holcombe, U.S. DOE - NETL, Morgantown, WV

Session 3C "PEMFC R&D 3 (MEAs)"
An Innovative and Cost Effective Approach to Manufacturing High Power Density Membrane Electrode Assemblies 860
S. Grot, Ion Power Inc, Bear, DE

Combinatorial Spray-Based Synthesis of PEM FC Electrocatalysts 864
P. Atanassova, D. Dericotte, P. Napolitano, B. Gurau, R. Bhatia, J. Brewster, M. Hampden-Smith, Cabot Superior MicroPowders, Albuquerque, NM

New Catalysts and ELAT® Materials for Fuel Cell Applications 868

Polyvinylidene Fluoride-Based Polymer Electrolyte Membranes For Fuel Cell Applications 872

Precious Metal Availability and Economic Analysis for PEMFC Vehicle Commercialization 876
E. Carlson, Y. Huang, M. Noordzij, TIAX LLC, Cambridge, MA

Production Equipment for MEA's 880
T. Kolbusch, Coatema Coating Machinery GmbH, Dormagen, GERMANY

Session 4A "Emerging SOFCs"
Commercialisation of CFCL's All-Ceramic Stack Technology 884
J. Dinsdale, K. Fogcr, J. Love, R. Ratnaraj, A. Washusen, Ceramic Fuel Cells Limited, Noble Park, AUSTRALIA

Delphi's Generation 2 APU System: From Gasoline to Electric Power 888
J. Zizelman, S. Shaffer, S. Mukerjee, Delphi Corporation, Rochester, NY

Development of Solid Oxide Fuel Cell Systems for Power Generation Applications 892
N. Minh, General Electric, Torrance, CA

Developments in Siemens Westinghouse SOFC Program 895
R. George, A. Casanova, Siemens Westinghouse, Pittsburgh, PA

Options for System Development Using SOFCs 898
Session 4B "Fuel Processing"

Diesel and Gasoline Reforming for Fuel Cell Systems ... 906

Micro-Structured Steam Reformers as Flexible Hydrogen Generators for Fuel Cell Systems 910
C. Cremer, U. Stimming, TU München Department of Physics E19, Garching, GERMANY,
J. Find, J. Lercher, TU München Department of Chemistry TC II, Garching, GERMANY,
P. Reuse, A. Renken, Swiss Federal Institute of Technology Lausanne, Laboratory for Chemical Reaction Technology, Lausanne, SWITZERLAND,
K. Haas-Santo, O. Görke, K. Schubert, Forschungszentrum Karlsruhe, Institute of Micro Process Engineering, Karlsruhe, GERMANY

New Catalyst Technologies for Advanced Fuel Cell/Fuel Processor Designs 914

Perovskite Catalysts for the Auto-Thermal Reforming of Liquid Hydrocarbon Fuels 918
J. Mawdsley, T. Krause, J. Kopasz, D-J. Liu, S. Ahmed, J. Ralph, L. Miller, H-K. Liao, Argonne National Laboratory, Argonne, IL

Production of Pure Hydrogen from Liquid Hydrocarbons Using a Compact Fuel Processor 922
D. Edlund, W. Pledger, T. Snider, C. Renn, IdaTech, Bend, OR

Selective Methanation Catalysts for Fuel Cell Reformate Purification ... 925
J. Wagner, Sud-Chemie Inc., Louisville, KY, H. Takeda, Sud-Chemie Catalysts Japan Inc.,
Toyama, JAPAN

Session 5A "System Development and Demonstrations"

Department of Defense Fuel Cell Programs .. 929
N. Josefik, M. Binder, F. Holcomb, U.S. Army Corps of Engineers, Champaign, IL

Development and Commercialization of a PEM-Fuel Cell System for Domestic Application 933
P. Britz, K. Heikrodt, Viessmann Werke, Allendorf, GERMANY

Development of 5kW PEFC System ... 937
H. Ohara, Y. Yamakawa, M. Mizusawa, A. Suzuki, K. Kobayashi, Ishikawajima-Harima Heavy Industries Co., Ltd. Energy Solution Department, Koto, JAPAN

Development of Residential PEFC Cogeneration Systems at Osaka Gas ... 941
S. Ibe, K. Hirai, N. Shinke, O. Yamazaki, S. Higashiguchi, K. Yasuhara, M. Hamabashiri, T. Tabata,
Osaka Gas, Osaka, JAPAN
Direct Fuel Cell Commercialization

Experience with the Thor/ISE Fuel Cell Bus
P. Scott, D. Mazaika, ISE Research, San Diego, CA

Molten Carbonate Fuel Cells in the Practical Test: Field Test Experience with MTU's HotModule Generator
M. Gnann, G. Huppmann, MTU CFC Solutions, München, GERMANY

The New York Power Authority Anaerobic Digester Gas Fuel Cell Program
Y. Kishinevsky, S. Zelingher, New York Power Authority, White Plains, NY

Session 5B "Portable/DMFC"

A Small DMFC System for Laptop Computer
K. Choi, S. Lee, H. Chang, Samsung Advanced Institute of Technology, Suwon, Republic of KOREA

Balance-of-Plant Components and System Integration for Portable SOFC's
J. Martin, J. Poshusta, C. Martin, Mesoscopic Devices, Broomfield, CO

Direct Methanol Fuel Cell Research at Los Alamos: From Fundamentals to Stack Prototyping
P. Zelenay, Los Alamos National Laboratory, Los Alamos, NM

Flowing Electrolyte Direct Methanol Fuel Cells: A Demonstration

Performance and Design of a Reformed Hydrogen Fuel Cell System
J. Pavio, Motorola Labs, Motorola, Tempe, AZ

PolyFuel's Z1 Membrane and Catalyst Coatings to Improve the Fuel Cell Performance in Portable Power Applications
P. Cox, S-Y. Cha, A. Attia, PolyFuel, Menlo Park, CA

Session 6A "Hydrogen"

Advanced Hydrogen Fuel Systems to Enable Fuel Cell Vehicles
A. Abele, Quantum Technologies, Irvine, CA

An Electrolysis Based "Hydrogen Energy Station" Approach to Providing Near Term Hydrogen Fueling Infrastructure
J. Slangerup, Stuart Energy, Mississauga, Ontario, CANADA

Challenges to Hydrogen Production, Delivery, and Storage: USDOE Program

Fuel Economy of Hydrogen Fuel Cell Vehicles
R. Kumar, R. Ahluwalia, X. Wang, A. Rousseau, Argonne National Laboratory, Argonne, IL
Fuelling Fuel Cells: Hydrogen Generation From Boron Based Compounds .. 996

Hydrogen Refueling Station Based on Autothermal Cyclic Reforming ... 1000
R. Kumar, P. Kulkarni, C. Moorefield, S. Barge, A. Dokoutchacv, V. Zamansky, GE Global Research, Irvine, CA

Near-Term and Long-Term Perspectives of Fuel Choices for Fuel Cell Vehicles 1004
S. Lasher, P. Teagan, TIAX, Cambridge, MA, S. Unnasch, TIAX, Cupertino, CA

Session 6B "Specialty Markets"

Fuel Cell APU for Commercial Aircraft ... 1008
D. Daggett, Boeing Commercial Airplane, Seattle, WA, J. Frech, NASA Glenn Research Center, Cleveland, OH, C. Balan, GE Corporate R&D, Niskayuna, NY, D. Birmingham, SOFCo, Alliance, OH

Fuel Cell System for an Autonomous Underwater Vehicle .. 1012
L. Joerissen, M. Maier, J. Roser, J. Garche, ZSW, Ulm, GERMANY, B. Waltl, STN-Atlas-Elektronik GmbH, Bremen, GERMANY

PEM Fuel Cell Based, High Specific Energy Storage System for Pulsed Power Applications 1016
J. Gongola, T. Zambrano, O. Velev, AeroVironment, Inc., Monrovia, CA

Performance Experience with Regenerative Fuel Cell Back-up Power Systems 1020
F. Barbir, S. Nomikos, M. Lillis, Proton Energy Systems, Wallingford, CT

Research Progress in Solar RFC Technology for SPF Airship ... 1024
K. Eguchi, T. Fuhihara, National Aerospace Laboratory of Japan, Mitaka, JAPAN, N. Shinozaki, S. Okaya, IHI Aerospace Co., Ltd., Kawagoe, JAPAN

Space Shuttle Fuel Cell Life Extension Program .. 1028
K. Poast, National Aeronautics and Space Administration, Houston, TX, L. Mustin, The Boeing Company, Huntington Beach, CA, M. Burghardt, The Boeing Company (formerly of United Space Alliance), Houston, TX, H. DeRonck, UTC Fuel Cells, South Windsor, CT

Taiwan Fuel Cell Scooter Development ... 1032

US Navy Shipboard Fuel Cell Program .. 1036
D. Hoffman, M. Ccrvi, Naval Surface Warfare Center, Philadelphia, PA, A. Nickens, U.S. Navy Office of Naval Research, Arlington, VA