Volume 2 – Table of Contents

Authors Index VI

Tu1.2 – NOVEL WAVEGUIDE TECHNOLOGIES
Chair: Roel Baets, Ghent University, Belgium

Tu1.2.1 Invited - Ultra-Wide Planar Bragg Grating Detuning and 2D Channel Waveguide Integration through Direct Grating Writing
Emmerson G.D., Gawith C.B.E., Williams R.B., Smith P.G.R., University of Southampton, United Kingdom, McMeekin S.G., Bonar J.R., Laming R.I., Alcatel Optronics UK, United Kingdom 154

Tu1.2.2 Compact CWDM Demultiplexer with a Transmission Grating Buried in Silica Waveguide
Nakazawa T., New Glass Forum, Japan, Kittaka S., Tsunetomo K., Nippon Sheet Glass Co. Ltd, Japan, Kintaka K., Nishii J., AIST Kansai, Japan, Hirao K., Kyoto University, Japan 158

Tu1.2.3 Hollow Waveguide with Variable Air Core for Tunable Planar Waveguide Devices
Miura T., Ishikawa M., Matsutani A., Koyama F., Tokyo Institute of Technology, Japan 160

Tu1.2.4 Hollow Waveguides for Integrated Optics
Jenkins R.M., McNie M.E., Blockley A.F., Price N., McQuillan J., QinetiQ Ltd, United Kingdom 162

Tu1.2.5 A Novel Single Step Sol-Gel Process for Silica on Silicon PLC's
Suyal N., Rehman H., Cacpechi S., Li X., Terahertz Photonics Ltd, United Kingdom 164

Tu1.2.6 Artificial Cladding Grating: a New Concept for the Manufacturing of Ion-Exchanged Waveguide Filter
Martinez C., CEA-DRT-LETI/DOPT, CEA/GRE, France, Hoarau B., Chirossel L., Jacquin O., Guidoux C., Teem Photonics, France 166

Tu1.4 – PACKET SWITCHING III
Chair: Alan Willner, University of Southern California, USA

Tu1.4.1 Invited - Optics inside Routers
McKeown N., Stanford University, USA 168

Tu1.4.2 A Novel Data Vortex Switch for Photonic Slot Routing
Macias M.I., University of Valladolod, Spain, Turkiewicz J.P., Vegas Olmos J.J., Koonen A.M.J., Tafur Monroy I., COBRA Institute, Eindhoven University of Technology, The Netherlands 172
Tu1.4.3
High-Speed Wavelength Routing Performance of Optical Packet Switch with an Optical Digital-to-Analog Converter
Uenohara H., Tokyo Institute of Technology and JST-CREST, Japan, Seki T., Kobayashi K., Tokyo Institute of Technology, Japan

Tu1.4.4
Three-State All-Optical Memory Based on Coupled Polarization Switches

Tu1.4.5
Optical Signal Processing Based on Self-Induced Polarization Rotation in a Semiconductor Optical Amplifier
Calabretta N., Liu Y., de Waardt H., Hill M.T., Khoe G.D., Dorren H.J. S., COBRA Institute, Eindhoven University of Technology, The Netherlands

Tu1.5 – VCSELs
Chair: Christoph Harder, Bookham Technology, Switzerland

Tu1.5.1
Invited - Long-Wavelength InP-Based VCSELs
Amann M.C., Technical University of Munich, Germany

Tu1.5.2
Linearity Performance of Uncooled Single-Mode InGaAsN VCSELs Operating at 1.3 μm
Webster M., Ingham J.D., Wonfor A., Penty R.V., White I.H., University of Cambridge, United Kingdom, Chirovsky L.M.F., Naone R.L., Gait D., Kisker D.W., Optical Communication Products Inc., USA, Jenkins D., Optical Communication Products (Europe) Ltd, United Kingdom

Tu1.5.3
1.5 mW SingleMode Operation of Wafer Fused 1550 nm Vertical Cavity Surface Emitting Lasers

Tu1.5.4
High Power 1320 nm Wafer-Bonded VCSELs
Mehta M., Jayaraman V., Jackson A., Wu S., Okuno Y., Piprek J., Bowers J.E., University of California Santa Barbara, USA

Tu1.5.5
Narrow Ridge Quinary GaInAsNSb/GaAs Laser Emission at 1.5 μm
Li L.H., Ramdane A., Merghem K., Bouchoule S., Meriadec C., Dupuis C., Travers L., CNRS-LPN, France, Landreau J., Alcatel Opto+, France, Harmand J.C., CNRS-LPN, France

Tu1.6 – WDM TRANSMISSION AND FEC
Chair: TBD

Tu1.6.1
Invited - Recent Progress in Undersea Communication Systems
Bergano N.S., Tyco Telecommunications, USA

Tu1.6.2
WDM Field Demonstration of 43 Gbit/s/Channel Path Provisioning by Automatic Dispersion Compensation Using Tone Modulated CS-RZ Signal
Tu1.6.3
1.28 Tb/s (32 x 43 Gb/s) WDM Unrepeatered Transmission over 402 km
Bissessur H., Boubal F., Gauchard S., Hugbart A., Labrunie L., Le Roux P., Hebert J.P.,
Brandon E., Alcatel, France

Tu1.6.4
54 x 42.7 Gb/s L and U-Band WDM Signal Transmission Experiments Using Homogeneous
Dispersion Line with In-Line Hybrid Optical Amplifiers
Matsuda T., Matsuura A., Kotanigawa T., Kataoka T., NTT Network Service Systems Laboratories,
Japan

Tu1.6.5
Projective Plane Iteratively Decodable Codes for WDM High-Speed Long-Haul Transmission
Djordjevic I.B., University of Bristol, United Kingdom, Vasic B., Sankaranarayanan S., University
of Arizona, USA

Tu1.6.6
10 Gbit/s RZ-DPSK Receiver with Sensitivity of -50.5 dBm (7 photons per information bit)
Using Block Turbo Code FEC
Kobayashi T., Shimizu K., Ouchi K., Ishida K., Miyata Y., Tokura T., Abe J., Mizuochi T.,
Motoshima K., Mitsubishi Electric Corporation, Japan

Tu1.7 - SPECIAL FIBRES, COMPONENTS AND MEASUREMENTS
Chair: Patrice Megret, Faculté Polytechnique de Mons, Belgium

Tu1.7.1
Invited - Photon Counting at Telecom Wavelengths
Ribordy G., Guinnard O., Id Quantique SA, Switzerland, Gisin N., Zbinden H., University of Geneva,
Switzerland

Tu1.7.2
Germania-Glass-Core Silica-Glass-Cladding MCVD Optical Fibres
Mashinsky V.M., Medvedkov O.I., Neustruev V.B., Dvoyrin V.V., Vasilev S.A., Dianov E.M.,
Russian Academy of Sciences, Russian Federation, Khopin V.F., Guryanov A.N., Institute of
Chemistry of High Purity Substances, Russian Federation

Tu1.7.3
Optical Loss Reduction in Highly GeO2-Doped Single-Mode MCVD Fibers by Refining
Refractive Index Profile
Bubnov M.M., Semjonov S.L., Likhachev M.E., Dianov E.M., Russian Academy of Sciences,
Russian Federation, Khopin V.F., Guryanov A.N., Institute of Chemistry of
High Purity Substances, Russian Federation, Fajardo J.C., Koh J., Mazumder P.,
Coming Inc., USA

Tu1.7.4
Reduction in Fibre Reliability Due to High Optical Power
Sikora E.S.R., Farrow K., McCartney D., Davey R., BT, United Kingdom

Tu1.7.5
Novel All-Fiber Tunable Bandpass Filter Using Hollow Optical Fiber
Choi S., Eom T.J., Yu J.W., Lee B.H., Oh K., Kwangju Institute of Science and Technology,
South Korea

Tu1.7.6
Expanded Beam Connectors with Microlens Fibres
Chanclo P., ENST-Bretagne, France, Thual M., ENSSAT and ENST-Bretagne, France, Gautreau O., ENST-
Bretagne, France, Kaczmarek C., Mouzer G., Roy M., Le Breton F., Optogone, France

XXIII
Tu3.2 – RAMAN AMPLIFIERS I
Chair: Evgeny Dianov, Russian Academy of Sciences, Russia

Tu3.2.1
Design Rules for Raman-Amplified Long-Span Transmission
Boutellier J.C., Bromage J., Thiele H.J., Brar K., Nelson L.E., OFS Laboratories, USA

Tu3.2.2
WDM Signal Tilt Behavior in Wideband Raman Amplifiers
Oguri A., Namiki S., Furukawa Electric Co. Ltd, Japan

Tu3.2.3
Widely Tunable CW Raman Fiber Laser Supported by Switchable FBG Resonators
Cierullies S., Krause M., Renner H., Brinkmeyer E., Technical University of Hamburg-Harburg, Germany

Tu3.2.4
Experimental Analysis of Gain Clamping Techniques for Lumped Raman Amplifiers
Sacchi G., Scuola Superiore Sant'Anna, Italy, Sugliani S., CNIT, Italy, Bolognini G., Faralli S., Di Pasquale F., Scuola Superiore Sant'Anna, Italy

Tu3.2.5
Raman Assisted EDF Amplifier Using 1460nm Pump Wavelength for C-Band Transmission with Long Repeater Span
Kurosawa Y., Takeda N., Kazawawa T., Taga H., Goto K., KDDI Submarine Cable Systems Inc., Japan

Tu3.2.6
Suppression of Penalties Induced by Parametric Nonlinear Interaction in Counter-Pumped Distributed Raman Amplifiers
Sugliani S., CNIT, Italy, Sacchi G., Bolognini G., Faralli S., Di Pasquale F., Scuola Superiore Sant'Anna, Italy

Tu3.2.7
Experimental Generation of Parabolic Pulses at 1550 nm Via Raman Amplification in Non Zero Dispersion Shifted Fibre
Finot C., Millot G., University of Bourgogne, France, Billet C., Dudley J.M., University of Franche-Comté, France

Tu3.4 – GMPLS NETWORKS
Chair: Piet Demeester, Ghent University, Belgium

Tu3.4.1
Invited - Global Seamless Network Demonstrator – A Proof of Concept
Gladisch A., Foisel H.-M., Lehr G., Braun R.-P., Hanik N., T-Systems Technology Centre, Germany, Roth H., Deutsche Telekom Group R&D, Germany, Rettenberger S., Marconi Communications Ondata, Germany, Goertz B., Atrics, Germany, Folkner M., Cisco Systems, Germany, Hillmann R., ADVA Optical Networking, Germany

Tu3.4.2
Invited - Future of IP Backbone Network Services Comprising GMPLS Based HIKARI (Photonic MPLS) Routers
Okamoto S., Misawa A., Yamanaka N., NTT Network Innovation Laboratories, Japan

Tu3.4.3
Field Trial of GMPLS Controlled PXCs and IP/MPLS Routers Using Existing Network Facilities
Otani T., Hayashi M., Tanaka H., Suzuki M., Takahashi E., Nakajima H., KDDI Corporation, Japan, Banerjee A., McGinnis E., Calient Networks, USA, Sage K., Trowel R., Cisco Systems, USA

Tu3.4.4
Performance Evaluation of Two New GMPLS Lightpath Setup Proposals over an Unidirectional OADM Ring Implemented on a Testbed
Muñoz R., Martínez R., Telecommunications Technological Center of Catalonia CTTC, Spain, Junyent G., Polytechnic University of Catalonia, Spain, Pinart C., Amrani A., Telecommunications Technological Center of Catalonia CTTC, Spain
Tu3.4.5
Rapid Mesh Restoration in GMPLS and a Performance Study
Alicherry M., Nagesh H., Phacke C., Poosala V., Bell Laboratories, Lucent Technologies, USA

Tu3.5 – POLYMER WAVEGUIDE DEVICES
Chair: Alfred Driessen, University of Twente, The Netherlands

Tu3.5.1
Invited - Novel Polymer-Based, High-Speed Electro-Optic Devices
Dalton L.R., University of Washington, USA

Tu3.5.2
32x32 Bascule Optical Switch with Polymer Waveguide
Tabata S., Saito T., Kawamura K., Itoh T., Hatta T., Mitsubishi Electric Corporation, Japan

Tu3.5.3
Polarization and Temperature Behaviour of All-Polymer Arrayed-Waveguide Gratings
Keil N., Yao H., Zawadzki C., Radmer O., Beyer F., Fraunhofer Institute for Telecommunications HHI, Germany, Bauer M., Dreyer C., Schneider J., Fraunhofer Institute for Reliability and Microintegration, Germany

Tu3.5.4
Protective Switch Module Based on Polymeric Planar Lightwave Circuits

Tu3.5.5
New Fabrication Method of Core-Cladding Structure in Self-Written Waveguide by Using Photosensitive Polyimide
Yamashita K., Hashimoto T., Oe K., Kyoto Institute of Technology, Japan, Mune K., Naitou R., Mochizuki A., Nitto Denko, Japan

Tu3.5.6
Silicone Materials for Optical Device Applications
Norris A., DeGroot J., Dow Corning Corporation, USA

Tu3.6 – ADVANCED COMPENSATION FOR HIGH SPEED TRANSMISSION
Chair: Nick Doran, Marconi Communications, UK

Tu3.6.1
Invited - Automatic Compensation for Chromatic Dispersion and Polarization-Mode Dispersion in 40-Gbit/s-Based WDM Systems
Ishikawa G., Fujitsu Laboratories Ltd, Japan

Tu3.6.2
Novel, Periodic-Group-Delay-Complemented Dispersion Compensation and Dispersion-Managed Solitons Enable Dense WDM over >20,000 km
Mollenauer L.F., Grant A., Liu X., Wei X., Xie C., Kang I., Bell Laboratories Lucent Technologies, USA

Tu3.6.3
160 Gbit/s Adaptive Dispersion Equalizer Using a Chirp Monitor with a Balanced Dispersion Configuration
Inui T., Mori K., Ohara T., Takara H., Komukai T., Moroaka T., NTT Network Innovation Laboratories, Japan

Tu3.6.4
Practical 40Gbit/s CSRZ-DPSK Transmission System with Signed Online Chromatic Dispersion Detection
Milivojevic B., Sandel D., Bhandare S., Noé R., Wüst F., University of Paderborn, Germany

XXV
Tu3.6.5
Suppression of Intra-Channel Nonlinear Distortion in 40 Gbit/s Transmission over Standard Single Mode Fibre Using Alternate-Phase RZ and Optimised Pre-Compensation
Appathurai S., Mikhailov V., Killey R.I., Bayvel P., University College London, United Kingdom

Tu3.6.6
10G/40G-Hybrid Dense-WDM Systems with Flexible OADM Upgradability
Nakamura K., Ooi H., Miura A., Katagiri T., Naito T., Ishikawa G., Fujitsu Laboratories Ltd, Japan

Tu3.7 – OPTICAL AMPLIFIERS
Chair: Edgar Voges, University of Dortmund, Germany

Tu3.7.1
Invited - Gain Bandwidth of Optical Amplifiers over 100nm and Beyond
Akasaka Y., Sprint, Advanced Technology Lab, USA

Tu3.7.2
+33dBm Output Power with 24.5% Optical Power Conversion Efficiency from a Cladding-Pumped L-Band EDFA

Tu3.7.3
Wideband La Co-Doped Bi2O3-Based EDFA for L-Band DWDM Systems
Guan B.O., Tam H.Y., Liu S.Y., Wai P.K.A., The Hong Kong Polytechnic University, Hong Kong, China, Sugimoto N., Asahi Glass Co. Ltd, Japan

Tu3.7.4
Athermalization of EDFA by Serial Concatenations of Sb Doped Silica Fiber
Im Y.E., Ryu U.C., Oh K., Kwang-Ju Institute of Science & Technology, South Korea, DiGiovaninetti D.J., OFS Laboratories, USA, Wang B., OFS Fiber, USA

Tu3.7.5
Nearly 10 dB Net Gain from a Thulium-Doped Tellurite Fibre Amplifier over the S-Band
Caponi R., Pagano A., Potenza M., Sordo B., Telecom Italia Lab, Italy, Manzanares Taylor E., Ng L.N., Nilsson J., University of Southampton, United Kingdom, Poli F., University of Parma, Italy

Tu4.2 – OPTICAL MONITORING AND NONLINEAR EFFECTS
Chair: Thas Nirmalathas, University of Melbourne, Australia

Tu4.2.1
Precise Dispersion Monitoring and Dynamic Compensation in 42.7-Gb/s Long-Haul Transmission Using an Optical Time Domain Level Monitoring Technique
Yokoyama Y., Ito T., Fukuchi K., Networking Research Laboratories, NEC Corporation, Japan

Tu4.2.2
A Novel Optical Signal Performance Monitoring Method Using Eye Pattern Image Analysis
Takeshita H., Fukuchi K., Networking Research Laboratories, NEC Corporation, Japan

Tu4.2.3
Chromatic-Dispersion-Insensitive PMD Monitoring for NRZ Data Based on Clock Power Measurement Using a Narrowband FBG Notch Filter
Yu C., Wang Y., Luo T., Pan Z., Motaghian Nezam S.M.R., Sahin A.B., Willner A.E., University of Southern California, USA

Tu4.2.4
Optical Sampling Source-Free Simultaneous Eye-Diagram Monitoring and Clock Recovery up to 160 Gb/s
Kang I., Dorrer C., Bell Laboratories, Lucent Technologies, USA

XXVI
Tu4.2.5
Impact of Spectral Hole Burning and Raman Effect in Transparent Optical Networks
Fürst C., Hartung R., Elbers J.P., Glingener C., Marconi, Germany

Tu4.2.6
Parametric Gain Impairments in 10 Gb/s Coded Optical Systems Working at Low Signal-to-Noise Ratios
Serena P., University of Parma, Italy, Antona J.C., Bigo S., Alcatel Research & Innovation, France, Bononi A., University of Parma, Italy

Tu4.2.7
Inoue J., Kubota F., Communications Research Laboratory, Japan

Tu4.4 – OPTICAL LABEL PROCESSING
Chair: Huug de Waardt, Eindhoven University of Technology, The Netherlands

Tu4.4.1
Invited - Transmission Properties of an All-Optical Labelled Signal Using Orthogonal IM/FSK Modulation Format
Chi N., Kozicki B., Zhang J., Holm-Nielsen P.V., Peucheret C., Jeppesen P., COM, Technical University of Denmark, Denmark

Tu4.4.2
200G-Chip/s, 128-Chip Hierarchical Optical BPSK Labels Processing and Its Networking Application
Wada N., Communications Research Laboratory, Japan, Takemori R., Kataoka N., Osaka University, Japan, Kubota F., Communications Research Laboratory, Japan, Kitayama K.-I., Osaka University, Japan

Tu4.4.3
Optical-Label Switching Based on DPSK/ASK Modulation Format with Balanced Detection for DPSK Payload
Liu X., Su Y., Wei X., Leuthold J., Giles R.C., Bell Laboratories, Lucent Technologies, USA

Tu4.4.4
A Novel Phase Encoding Scheme for Optical Packet Label Processing
Hung W., Chan C.K., Chen L.K., Tong F., The Chinese University of Hong Kong, Hong Kong, China

Tu4.4.5
Chirp Properties of SOA-Based Wavelength Converters for FSK/IM Combined Modulation Format
Verdurmen E.J.M., Liu Y., Koonen A.M.J., de Waardt H., Tafur Monroy I., COBRA Institute, Technical University of Eindhoven, The Netherlands

Tu4.5 – HIGH SPEED SOURCES
Chair: Anders Larsson, Chalmers University of Technology, Sweden

Tu4.5.1
Invited - Transmission over 300 Km of Teralight™ Fiber with an All Integrated ETDM 40Gb/s Optoelectronic Transmitter Module
Pillet D., Alcatel Opto+, France, Disparseati F., EGIDE, France, Rodrigues V., Alcatel Optonics, France, Baillargeat D., Thon B., Moron J., OMMIC, France, Aupeit C., Verneuil J.L., University of Limoges, France, Grot D., Pincemin E., France Télécom R&D, France

Tu4.5.2
Self-Pulsating Lasers with Complex-Coupled DFBs
Kreissl J., Bauer S., Brox O., Lenz E., Gaertner T., Biletzke M., Sartorius B., Nolting H.P., Fraunhofer Institute for Telecommunications HHF, Germany
Tu4.5.3
Timing Stability of Injection-Locked 40GHz Self-Pulsating DFB-Lasers
Brox O., Bauer S., Bobbert C., Biletzke M., Kreisal J., Wünsche H.J., Sartorius B.,
Fraunhofer Institute for Telecommunications HHI, Germany

Tu4.5.4
Low-Jitter and High-Power All-Active Mode-Locked Lasers
Yvind K., Larsson D., Christiansen L.J., Angelo C., Oxenløwe L.K., Merk J., Birkedal D.,
Hvam J.M., *COM, Technical University of Denmark, Denmark, Hanberg J., GIGA ApS, Denmark*

Tu4.5.5
37 GHz Direct-Modulation Bandwidth of Multi-Section InGaAsP/InP DBR-Laser with Weakly Coupled Active Grating Section
Kaiser W., Bach L., Reithmaier J.P., Forchel A., *University of Wuerzburg, Germany*,
Winther Berg T., Tromborg B., *COM, Technical University of Denmark, Denmark*

Tu4.5.6
Uncooled Operation of a 40Gb/s Directly Modulated Multi-Level Laser for Datacoms Applications
Wonfor A., *University of Cambridge, United Kingdom*, White J.K., Bookham Technology, Canada,
Coulson E.E., Penty R.V., White I.H., *University of Cambridge, United Kingdom*

Tu4.6 - ULTRA LONG DISTANCE WDM
Chair: Jean-Luc Beylat, *Alcatel, France*

Tu4.6.1
Invited - Multi-Terabit DPSK Transmission for Submarine Systems: Experimental Assessment with Relevant Margins from Regional to Transpacific Distances
Marcou J.F., *Alcatel, France*

Tu4.6.2
72-nm Continuous Single-Band Transmission of 3.56 Tb/s (89 x 42.7 Gb/s) over 4000 km of NZDF Fiber

Tu4.6.3
Impact of Span Loss on Transmission over Multiple Long Span with Bi-Directional Raman Pumping
Bromage J., Bouteiller J.C., Thiele H.J., Nelson L.E., Brar K., Stulz S., Boncek R., *OFS, USA*

Tu4.6.4
64x10 Gbit/s Transmission over 13,100 km of Installed Fiber Combining Dispersion Flattened and Conventional Fiber Systems
Mohs G., Kovsh D., Bakhshi B., Lynch R., Golovchenko E.A., Manna M., Vaa M., Patterson W.W.,
Corbett P., Li H., Harvey G., Abbott S., *Tyco Telecommunications, USA*

Tu4.6.5
Study on Ultralong-Haul Transmission with Pre-Filtered CSRZ-DPSK 42.7Gbit/s Signal

Tu4.6.6
A Performance Stabilized 40Gb/s CS-RZ DPSK Transponder for Transoceanic WDM Transmission Systems
Shimomura K., Ishida K., Mizuochi T., Kobayashi T., Sugihara T., Shimizu K., Motoshima K.,
Mitsubishi Electric Corporation, Japan
Tu4.7 – RAMAN AMPLIFIERS II
Chair: Christian Larsen, OFS, Denmark

Tu4.7.1 Invited - Hybrid Optical Amplification Technologies for High-Speed and Wide-Band Optical Communication Systems
Masuda H., Miyamoto Y., Kawakami H., NTT Network Innovation Laboratories, USA

Tu4.7.2 Experimental Characterisation of Distributed Raman Amplification in a Standard Single Mode Fibre Based 160 Gbit/S Transmission System
Xu Z., Oxenløwe L.K., Siahlo A.I., Berg K.S., Clausen A.T., COM, Technical University of Denmark, Denmark, Le Q.N.T., OFS Denmark I/S, Denmark, Peucheret C., Rottwitt K., Jeppesen P., COM, Technical University of Denmark, Denmark

Tu4.7.3 Effective Reduction of Pump-Signal Four-Wave-Mixing Interaction in Co-Pumped Distributed Raman Amplifiers
Di Pasquale F., Scuola Superiore Sant'Anna, Italy, Meli F., Cisco Photonics Italy, Italy

Tu4.7.4 Linear and Nonlinear Propagation of High Repetition Rate Swept-Wavelength Raman Pumps
Nicholson J.W., OFS Laboratories, USA

Tu4.7.5 Operating Conditions for Profitable Time Division Multiplexing of the Raman Pumps
Martinelli C., Jolivet V., Moncelet J.L., Mongardien D., Bayart D., Alcatel Research & Innovation, France

Tu4.7.6 Heavy Metal Element Containing TeO2-Based Glasses for Discrete Raman Fiber Amplification
Dai G., Tassone F., Pirelli Cavi e Sistemi Telecom, Italy, Li Bassi A., Russo V., Bottani C.E., INFM - Politecnico di Milano, Italy, D'Amore F., CoreCom, Italy