Volume 1 – Table of Contents

Authors Index

Mo3.2 – FIBRE GRATINGS
Chair: Hervé Lefèvre, NetTest, France

Mo3.2.1 517 µm² Effective Area Single-Mode Bragg Fibre
Fevrier S., Viale P., Gerome F., Leproux P., Roy P., Blondy J.-M., University of Limoges, France,
Dussardier B., Monnom G., University of Nice Sophia-Antipolis, France

Mo3.2.2 Long-Period Gratings Written in a Pure Silica Holey Fiber by the Glass Structure Change
Morishita K., Miyake Y., Osaka Electro-Communication University, Japan

Mo3.2.3 Tunable FBG Dispersion Compensator with a Simple Ring Structure
Okude S., Kimura N., Sakamoto A., Tanaka D., Wada A., Fujikura Ltd, Japan

Mo3.2.4 Low Dispersion Fibre Bragg Grating with High Detuning Tolerance for Advanced Modulation
Formats
Peucheret C., Zsigri B., Deyerl H.-J., COM, Technical University of Denmark, Denmark, Hewlett S.J.,
AOFR Pty Ltd, Australia, Kristensen M., Jeppesen P., COM, Technical University of Denmark, Denmark

Mo3.2.5 45 ITU-100 Channels Dispersion Compensation Using Cascaded Full C-Band Sampled FBGs
for Transmission over 640-Km SMF
Feng K.-M., National Tsing Hua University, Taiwan, Lee S., Khosravani R., Havstad S.A.,
Rothenberg J.E., Phaethon Communications Inc., USA

Mo3.2.6 Channel-Spacing-Tunable Sampled Fiber Grating Based on Heat-Induced Multiple-Phase-Shift
(MPS) Technique
Yamashita S., Yokooji M., The University of Tokyo and CREST, Japan Science and Technology, Japan

Mo3.2.7 Novel Fabrication Method for Dispersion Compensation Fiber Grating Utilizing Excimer
Lamp (λ=172nm) and Uniform Phase Mask
Sakamoto A., Kimura N., Okude S., Tanaka D., Wada A., Fujikura Ltd, Japan

Mo3.4 – PACKET Switching I
Chair: Andreas Gladisch, T-Systems, Germany

Mo3.4.1 Invited - Versatile Optical Code Based MPLS for Circuit-, Burst-, and Packet Switchings
Kitayama K.-I., Osaka University, Japan
Mo3.4.2 Demonstration of IP Client-to-IP Client Packet Transport over an Optical Label-Switching Network with Edge Routers

Mo3.4.3 Experimental Demonstration of Ultrafast Optical Path Reservation Using Out-of-Band Optical-Code Label Control Packet
Fujiwara Y., Onohara K., Osaka University, Japan, Wada N., Kubota F., Communications Research Laboratory, Japan, Kitayama K., Osaka University, Japan

Mo3.4.4 Multi-Ring Optical Packet MAN: Performance and Feasibility Issues
Chiaroni D., Dupas A., Poignant P., Dutisseuil E., Gilbert L., Alcatel Research & Innovation, France, Lautenschlager W., Alcatel Research & Innovation, Germany

Mo3.4.5 A Multi-Domain Two-Layer Labelling Scheme for Optical Packet Switched Networks with Label-Swapping-Free Forwarding
Zhang Y., Chen L.K., Chan C.K., The Chinese University of Hong Kong, Hong Kong, China

Mo3.4.6 QoS Differentiation and Header/Payload Separation in Optical Packet Switching Using Polarisation Multiplexing
Bjørnstad S., Telenor R&D and Norwegian University of Science and Technology, Norway, Nord M., Telenor R&D, Norway and COM, Technical University of Denmark, Denmark, Hjelme D.R., Norwegian University of Science and Technology, Norway

Mo3.5 – OPTICAL SIGNAL PROCESSING I
Chair: Naoto Kobayashi, National Institute of Advanced Industrial Science and Technology, Japan

Mo3.5.1 Invited - High-Speed 80x80 MEMS Optical Switch Module with VOA
Ide S., Fujitsu Laboratories Ltd, Japan, Mori K., Akashi T., Sakai Y., Yamabana T., Fujitsu Ltd, Japan, Ishii Y., Fujitsu Kyushu Digital Technology Ltd, Japan, Tsuboi O., Fujitsu Laboratories Ltd, Japan, Kawai M., Fujitsu Ltd, Japan

Mo3.5.2 Variable Optical Attenuator with Simple SOI-MEMS Mirror
Chong C., Isamoto K., Morosawa A., Kato K., Santec Corporation, Japan, Fujita H., Toshiyoshi H., University of Tokyo, Japan

Mo3.5.3 Wavelength Selective 4x1 Switch with High Spectral Efficiency, 10 dB Dynamic Equalization Range and Internal Blocking Capability

Mo3.5.4 Compact 32-Channel 2 x 2 Optical Switch Array Based on PLC Technology for OADM Systems
Hashizume Y., Takahashi H., Watanabe T., Sohma S., Shibata T., Okuno M., NTT Corporation, Japan

Mo3.5.5 Laser-Activated Optical Bubble Switch Element
Hengstler S., Uebbing J.J., McGuire P., Agilent Technologies Inc., USA

Mo3.5.6 Micromachined GaAlAs/GaAs Double Cavity Tunable Filter
Janto W., Amano T., Matsutani A., Kondo T., Arai M., Koyama F., Tokyo Institute of Technology, Japan
Mo3.6 – N X 160 GBIT/S TRANSMISSION
Chair: Jean-Marc Delavaux, Keopsys Inc., USA

Mo3.6.1 Invited - 8x160Gb/s (1.28Tb/s) DWDM/OTDM Unrepeatered Transmission over 140km
Standard Fiber by Semiconductor-Based Devices
Japan, Ogawa Y., Arahira S., Oki Electric Industry Co. Ltd, Japan, Tajima K., Nakamura S.,
NEC Corporation, Japan

Mo3.6.2 160 Gb/s Optical Data Pattern Monitoring Using a Software-Synchronized All-Optical
Sampling System
Westlund M., Sunnerud H., Karlsson M., Chalmers University of Technology, Sweden,
Andrekson P.A., Chalmers University of Technology, Sweden and Lehigh University, USA

Mo3.6.3 Generation of 160 Gb/s Carrier-Suppressed Return-to-Zero Signals
Moeller L., Su Y., Liu X., Leuthold J., Xie C., Bell Laboratories, Lucent Technologies, USA

Mo3.6.4 Single Channel 160 Gb/s Carrier-Suppressed RZ Transmission over 640 km with EA Modulator
Based OTDM Module
Murai H., Kagawa M., Tsuji H., Fujii K., Oki Electric Industry Co. Ltd, Japan

Mo3.6.5 8x160 Gb/s (1.28 Tbit/s) DWDM Transmission with 0.53 bit/s/Hz Spectral Efficiency Using
Single EA-Modulator Based RZ Pulse Source and Demux
Schmidt M., Schuh K., Lach E., Schilling M., Veith G., Alcatel Research & Innovation, Germany

Mo3.6.6 160 Gbit/s Transmission over Dispersion Managed Fibre Set
Berger J., Fraunhofer Institute for Telecommunications HHI, Germany, Le Q.N.T., OFS Fitel
Denmark Ltd, Denmark, Wietfeld A., University of Erlangen-Nürnberg, Germany, Ferber S.,
Fraunhofer Institute for Telecommunications HHI, Germany, Grüner-Nielsen L., OFS Fitel
Denmark Ltd, Denmark, Schmauss B., University of Erlangen-Nürnberg, Germany, Weber H.G.,
Fraunhofer Institute for Telecommunications HHI, Germany

Mo3.7 – PMD & POLARISATION EFFECTS
Chair: Nicolas Gisin, University of Geneva, Switzerland

Mo3.7.1 Polarization-Mode Dispersion Enhancement of Nonlinear Propagation
Marks B.S., Menyuk C.R., University of Maryland Baltimore County, USA

Mo3.7.2 Comparison of Field Measurements and Statistical Estimation of Link PMD Coefficients in
Optical Systems
Brito Junior J.A., Cieslak A., Intelig Telecomunicações LTDA, Brazil, von der Weid J.P., Pontifical
Catholic University of Rio de Janeiro, Brazil

Mo3.7.3 Polarization-Dependent Loss Statistics in Recirculating Loops
Vinegoni C., Petersson M., Sunnerud H., Karlsson M., Chalmers University of Technology, Sweden

Mo3.7.4 Concerns about Emulation of Polarization Effects in a Recirculating Loop
Corbel E., Alcatel Research & Innovation, France

Mo3.7.5 Fluctuation Relation in the Principal States of Polarization at Separate Wavelengths in
Terrestrial Cables
Ogaki K., Nakada M., Miyakawa T., Nagao Y., KDDI R&D Labs Inc., Japan, Nishijima K.,
KDDI Corporation, Japan

XXIII
Mo3.7.6
Interferometric PMD-Measurement of an Amplified Link
Cyr N., Ruchet B., Roberge R., Cantin P., EXFO Electro-Optical Engineering, Canada

Mo3.7.7
High Resolution High Birefringence Distributed Measurements with Photon Counting OTDR
Wegmuller M., Gisin N., University of Geneva, Switzerland

Mo4.2 – PULSE EFFECTS IN WDM TRANSMISSION
Chair: Ioannis Tomkos, Athens Information Technology Center, Greece

Mo4.2.1
Invited - Ultra-Dense WDM Transmission Technologies Toward 100 % Spectral Efficiency
Morita I., KDDI R&D Laboratories Inc., Japan

Mo4.2.2
Intensity and Phase Characterization of Pico-Second Pulses in Long-Haul Dispersion-Managed Transmission Systems
Ozeki Y., Yoshimizu H., Takushima Y., Kikuchi K., RCAST, University of Tokyo, Japan, Yamauchi H., Taga H., KDDI Submarine Cable Systems Inc., Japan

Mo4.2.3
Large-Dispersion-Tolerance Picosecond Optical Pulse Transmission Using Frequency Chirp Control
Shake I., Takara H., Kawanishi S., NTT Network Innovation Laboratories, Japan

Mo4.2.4
Single-Channel Nonlinear Impairments at Various Bit-Rates in Dispersion Managed Systems
Cauvin A., Frignac Y., Bigo S., Alcatel Research & Innovation, France

Mo4.2.5
Efficient Wavelength-Conversion and Compression of 10 Gbit/s Pseudorandom Pulses by Using Soliton Self-Frequency Shift in a Photonic Crystal Fiber
Abedin K.S., Miyazaki T., Kubota F., Communications Research Laboratory, Japan

Mo4.2.6
Comparison of Modulation Formats for DWDM Transmission of 160 Gbit/s OTDM-Channels with Spectral Efficiency of 0.8 bit/s/Hz
Randel S., Konrad B., Hodzic A., Petermann K., University of Berlin, Germany

Mo4.3 – OPTICAL REGENERATION
Chair: René-Jean Essiambre, Lucent Technology, USA

Mo4.3.1
40 Gb/s Transmission over 80,000 km Dispersion Shifted Fibre Using Compact Opto-Electronic-3R Regeneration
Kuebart W., Alcatel Research & Innovation, Germany, Lavigne B., Alcatel Research & Innovation, France, Witte M., Velth G., Alcatel Research & Innovation, Germany, Leclerc O., Alcatel Research & Innovation, France

Mo4.3.2
Experimental Verification for Cascadeability of All-Optical 3R Regenerator Utilizing Two-Stage SOA-Based Polarization Discriminated Switches with Estimated Q-Factor over 20 dB at 40 Gbit/s Transmission
Inohara R., Tsurusawa M., Nishimura K., Usami M., KDDI R&D Laboratories Inc., Japan

Mo4.3.3
Transmission at 40 Gbps with a Semiconductor-Based Optical 3R Regenerator
Hashimoto Y., Kuribayashi R., Nakamura S., Tajima K., Ogura I., Networking Research Laboratories, NEC Corporation, Japan

Mo4.3.4
Operation Margins of a SOA-Based 3R Regenerator for 42.66Gbit/s ULH Transmission Systems
Lavigne B., Balme, B., Brindel P., Pierre L., Dagens B., Brenot R., Thedrez B., Renaud M., Leclerc O., Alcatel Research & Innovation, France
Mo4.3.5
Mitigation of Pattern-Induced Degradation in SOA-Based All-Optical OTDM Demultiplexers by Using RZ-DPSK Modulation Format
Chan K., Chan C.K., Chen L.K., Tong F., The Chinese University of Hong Kong, Hong Kong, China

Mo4.3.6
40 Gbit/s 3R Regenerator with a Combination of the SPM and XAM Effects for All-Optical Networks
Daikoku M., Otani T., Yoshikane N., Tanaka H., KDDI R&D Laboratories Inc., Japan

Mo4.3.7
43 Gbit/s Transmission over 210 km SMF with a Directly Modulated Laser Diode
Wedding B., Pöhlmann W., Gross H., Thalau O., Alcatel SEL AG, Germany

Mo4.4 – PACKET SWITCHING II
Chair: Kristian E. Stubkjaer, COM, Denmark

Mo4.4.1
Invited - Architectures for Optical Packet and Burst Switches
Develder C., Cheyns J., Van Breusegem E., Baert E., Colle D., Pickavet M., Demeester P., Ghent University – IMEC, Belgium

Mo4.4.2
Blocking Performance of a Cost-Optimized Scalable Optical Packet Switch in Asynchronous Operation

Mo4.4.3
Considerations on Packet Scheduling Algorithms for Photonic Packet Switch with WDM-FDL Buffers
Baba K., Yamaguchi T., Murata M., Kitayama K., Osaka University, Japan

Mo4.4.4
Application Dependent Performance of a Mesh Optical Burst Switched Network and Effect of Burst Size

Mo4.4.5
A Highly Efficient Optical Packet Switching Node Design Supporting Guaranteed Service
Bjørnstad S., Telenor R&D and Norwegian University of Science and Technology, Norway, Hjelme D.R., Stol N., Norwegian University of Science and Technology, Norway

Mo4.4.6
ORION: a Novel Network Concept for IP over WDM Networks
Van Breusegem E., Cheyns J., Colle D., Pickavet M., Demeester P., Ghent University – IMEC, Belgium

Mo4.5 – INORGANIC ELECTRO-OPTIC DEVICES
Chair: Julian Soole, USA

Mo4.5.1
Invited - Low Driving Voltage Polarization-Independent >3 GHz- Response Electro-Optic Switch Using KTN Waveguides

XXV
Mo4.5.2
10Gb/s Transmission Using a Low Chirp Modulator Integrated in Poled Z-Cut LiNbO₃ Substrate
Porte H., Photline Technologies, France, Courjal N., University of Franche Comté, France, Hauden J., Mollier P., Photline Technologies, France

Mo4.5.3
Single-Drive LiNbO₃ Mach-Zehnder Modulator with Widely DC Tunable Chirp
Balsamo S., Bravetti P., Ghislotti G., Coming OTI, Italy

Mo4.5.4
Truly Endless Polarization Control with I&Q Mode Converters in X-Cut, Y-Propagation Lithium Niobate
Sandel D., Noé R., University of Paderborn, Germany

Mo4.5.5
Fast Optical Limiters for 2R Regeneration in Periodically-Poled Lithium Niobate Waveguides
Shu Q.Z., Woll D., Zhou D., Lightbit Corporation, USA, Parameswaran K., Fejer M., Stanford University, USA, Field S., Sher M., Lightbit Corporation, USA

Mo4.5.6
Hybrid Reciprocating Optical Modulator for Millimetre-Wave Generation
Kawanishi T., Communications Research Laboratory, Japan, Oikawa S., Sumitomo Osaka Cement Co. Ltd, Japan, Yoshiea K., Mitsubishi Electric Corporation, Japan, Shinada S., Sakamoto T., Izutsu M., Communications Research Laboratory, Japan

Mo4.6 - QUANTUM CRYPTOGRAPHY AND OPTICAL SAMPLING
Chair: Giancarlo Prati, CNIT, Italy

Mo4.6.1
Invited - Practical Quantum Cryptography
Gisin N., Zbinden H., University of Geneva, Switzerland, Ribordy G., id Quantique SA, Switzerland

Mo4.6.2
44km Quantum Key Distribution Using Single Sideband Detection Scheme with WDM Synchronization
Merolla J.M., Guerreau O., GTL-CNRS Telecom, France, Malassenet F., Georgia Institute of Technology, USA, Goedgebuer J.P., University of Franche-Comté, France

Mo4.6.3
40Gb/s Transmission over 4000km of Standard Fibre Using In-Line Nonlinear Optical Loop Mirrors
Huang Z., Gray A., Lee Y.W.A., Khrushchev I., Bennion I., Aston University, United Kingdom

Mo4.6.4
0.5 Tbit/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber
Li J., Acreo AB and Chalmers University of Technology, Sweden, Westlund M., Sunnerud H., Olsson B.E., Karlsson M., Chalmers University of Technology, Sweden, Andrekson P.A., Chalmers University of Technology, Sweden and Lehigh University, USA

Mo4.6.5
Measuring Eye Diagram of 640-Gbit/s OTDM Signal with Optical Sampling System by Using Wavelength-Tunable Soliton Pulse
Yamada N., Nogiwa S., Ohta H., Yokogawa Electric Corporation, Japan

Mo4.7 - DISPERSION COMPENSATION
Chair: TBD

Mo4.7.1
Invited - Dispersion Compensation, Techniques and Systems Requirements
Grüner-Nielsen L., OFS Denmark, Denmark
Mo4.7.2
RDF with Attenuation as Low as 0.205dB/Km
Mukasa K., Kawasaki H., Yagi T., Furukawa Electric Co. Ltd, Japan

Mo4.7.3
Impact of Group-Delay Ripple on Differential-Phase-Shift-Keying Transmission Systems
Liu X., Mollenauer L.F., Wei X., Bell Laboratories, Lucent Technologies, USA

Mo4.7.4
Measurement of Chromatic Dispersion Using Direct Instantaneous Frequency Measurement
Dorrer C., Bell Laboratories, Lucent Technologies, USA

Mo4.7.5
Evolution and Systems Impact of MPI in HOM Fiber Devices
Ramachandran S., Ghalmi S., OFS Laboratories, USA, Chandrasekhar S., Buhl L.L., Bell Laboratories, Lucent Technologies, USA

Mo4.7.6
Rapid Automatic Chromatic Dispersion Compensation Using GMPLS Signalling Enhancement for Dynamically Reconfigurable All-Optical Network
Hashimoto T., Yagi M., Koyano H., Tanaka S., Inomata A., Satomi S., Ishimatsu H., Ryu S., Japan Telecom Co. Ltd, Japan

XXVII