COMPUTATIONAL FLUID AND SOLID MECHANICS 2003

Proceedings
Second MIT Conference on Computational Fluid and Solid Mechanics
June 17–20, 2003

Editor:
K.J. Bathe
Massachusetts Institute of Technology
Cambridge, MA, USA

VOLUME 1

2003

ELSEVIER

Contents Volume 1

Preface ... v
Session Organizers .. vii
Fellowship Awardees ... ix
Sponsors ... xi

Plenary

Dvorkin, E.N.,
Steel industry: simulation of production processes and product performance evaluation using finite element models ... 2

Kaazempur-Mofrad, M.R., Younis, H.F., Karcher, H., Lin, J.W., Golji, J., Isasi, A.G., Tan, J.S., Chan, R.C., Kamm, R.D.,
Biological simulations at all scales: from cardiovascular hemodynamics to protein molecular mechanics 8

Kaxiras, E.,
Simulations of complex systems across multiple length scales ... 13

Kochhar, N.K., Kelkar, S.G.,
The role of CAE in product development at Ford Motor Company ... 15

Le Tallec, P., Hauret, P.,
Nonlinear schemes and multiscale preconditioners for time evolution problems in constrained structural dynamics 19

Mahesh, K., Constantinescu, G., Moin, P.,
A numerical method for large-eddy simulation in complex geometries ... 23

Rieger, H.,
Aerodynamic simulation in aerospace industry: status, needs and expectations from EADS .. 31

Vacherand, J.-M.,
Consequences of modeling on tire development ... 36

Solids & Structures

Abou Ghadeer, M., Ye, J., Mansouri, A.H.,
Interactions between strip and beam elements of a hollow block slab system ... 42

Akers, S.A., Windham, J.E.,
Structure-medium interaction simulations ... 47

Amabili, M., Pellegrini, M.,
Nonlinear vibrations of circular cylindrical panels ... 50

Andres, M., Harte, R.,
On the buckling mechanisms of large-scale shell structures made of high-strength concrete .. 54

Arroyo, J.R., Sudrez, L.E.,
Nonlinear seismic response of a soil deposit using the Volterra series ... 59

Arroyo, M., Belytschko, T.,
Membranes and rods from lattice films and chains: modeling and computations ... 64
Attia, M.S., Meguid, S.A., Liew, K.M.,
Multiscale modelling of crush behaviour of closed-cell aluminium foam .. 68

Avila, A.F., Avila Jr., J.,
A new hybrid formulation for laminated composite materials analysis ... 72

Banerjee, A., Hancock, J.W.,
Higher order terms for a crack terminating at the interface between mismatched solids 76

Banks-Sills, L., Ishib, C.,
Calculation of stress intensity factors for bimaterial notches – thermal stresses 80

Bayart, A.-S., Langrand, B., Deletombe, E., Markiewicz, E., Drazetic, P.,
Phenomenological modelling of structural embrittlement in perforated plates 83

Beghini, M., Bertini, L., Fontanari, V.,
Analysis of a partially closed oblique edge crack under surface travelling load 87

Benedetti, M., Bertini, L., Fontanari, V.,
Behaviour of small fatigue cracks emanating from notches in Ti–6Al–4V .. 91

Benz, T.,
Bounding surface plasticity for cyclic loaded sand and its implementation .. 95

Bergström, J.S., Hilbert, L.B., Brown, S.B.,
Large strain time- and temperature-dependent modeling of PTFE ... 99

Bernadou, M., Depeyre, S., He, S., Meillard, P.,
Two-dimensional numerical simulations of magnetic domains in ferromagnetic microstructures 103

Bhalla, S., Naidu, A.S.K., Yang, Y.W., Soh, C.K.,
An impedance-based piezoelectric–structure interaction model for smart structure applications 107

Bisagni, C.,
Development of a crashworthy subfloor concept for a commuter aircraft ... 111

Borino, G., Cottone, G., Parrinello, F.,
A microplane model for plane-stress masonry structures ... 115

Bornemann, P.B., Galvanetto, U.,
External forcing terms in energy-conserving based time integration algorithms 118

Borri, C., Costa, C.,
Quasi-steady analysis of a two-dimensional bridge deck element ... 122

Borri, M., Trainelli, L., Croce, A.,
An index reduction method in holonomic system dynamics .. 126

Borri-Brunetto, M., Chiaia, B.,
Multiscale numerical simulation of rock slope instabilities ... 131

Boubakar, M.L., Lexcellent, C., Valoroso, N., Vieille, B.,
R_l models of pseudoelasticity for SMAs at finite strains. Formulation and implementation 136

Boucard, P.-A., Dèrumeaux, M., Ladevèze, P., Roux, Ph.,
Macro–meso models for joint submitted to pyrotechnic shock ... 139

Branç, B., Ibrahimbegović, A., Korelc, J.,
On dynamics and large strain analysis of shells .. 143

Brockmann, T.H., Lammering, R.,
Finite beam elements for rotating piezoelectric fiber composite structures ... 145

Thermo-elasto-plastic finite element modeling of an Otto four-stroke engine piston for consecutive load cycles 149

Bull, J.W.,
Displacement and fatigue effects of a void under a cement concrete runway 154
Buttlar, W.G., Paulino, G.H., Song, S.H.,
Application of graded finite elements for asphalt pavement analysis .. 157
Cacciola, P., Impollonia, N., Muscolino, G.,
A reanalysis technique for structures under white noise excitation ... 162
Chakraborty, A., Gopalakrishnan, S.,
A spectrally formulated finite element for analysis of wave propagation in layered composite media 166
Chambert, J., Pernin, N., Lemiale, V., Picart, P.,
Micromechanical nonlocal damage modeling ... 172
Chan, S.H., Phoon, K.K., Lee, F.H.,
Large-scale finite element analyses of intersecting tunnels using PCs ... 176
Chapelie, D., Ferent, A.,
Reliability considerations for 3D-shell elements ... 181
Chen, Y.F.,
Prediction of lateral distribution of vehicular live loads on bridge girders by the refined analysis method 185
Chou, C.C., McDaniel, C.C., Uang, C.M., Seible, F.,
Numerical and experimental investigation of steel structural component of the new San Francisco–Oakland Bay Bridge .. 192
Cirak, F., West, M., Mauch, S., Radovitzky, R.,
Parallel finite element computation of contact-impact problems with large deformations 197
Colliat, J.B., Ibrahimbegović, A., Davenne, L.,
Modeling thermomechanical behaviour of cellular structure made of brittle material 200
Combesecure, A., Delcroix, F., Caplain, L., Espanol, S., Langrand, B.,
A "global" finite element model for the simulation of failure of spot welded assemblies during impact 203
Consolazio, G.R., Cowan, D.R., Lehr, G.B.,
Prediction of lateral impact loads imparted to bridge piers during barge collision events 207
Dameron, R.A., Parker, D.R., Dahlgren, T.,
Nonlinear time history analysis for the seismic retrofit of the Richmond–San Rafael Bridge 212
Danielson, K.T., Akers, S.A., Adley, M.D.,
Parallel computation methods for large-scale nonlinear CSM .. 217
Dazio, A., Hines, E.M., Parker, D., Seible, F.,
Numerical and experimental investigation of reinforced concrete key structural components of the new San Francisco–Oakland Bay Bridge ... 221
Delaplace, A., Ibrahimbegović, A.,
Discrete analysis of the dynamic behavior of heterogeneous material ... 225
Dessouky, S., Masad, E., Zbib, H., Little, D.,
Gradient elasticity finite element model for the microstructure analysis of asphaltic materials 228
Doherty, J.P., Deeks, A.J.,
An efficient method for elasto-static analysis of rigid circular footings ... 234
Düster, A., Hartmann, S.,
High order anisotropic finite elements for three-dimensional isotropic hyperelastic continua 238
Eamon, C.D., Baylot, J.T., O'Daniel, J.L.,
Expedient FE analysis of concrete masonry walls subjected to blast loads ... 242
Eidel, B., Gruttmann, F.,
On the theory and numerics of orthotropic elastoplasticity at finite plastic strains 246
Elliott, B., Petrinic, N., Wang, L.,
Identification of parameters for a rate and temperature-dependent constitutive model 249
Felippa, C.A.,
A distortion-insensitive four-noded membrane quadrilateral that passes the patch test 254
Figiel, L., Kamiński, M.,
Computational fatigue crack growth analysis in layered composites .. 258

Flice, L., Fratini, L., Micari, F.,
Enhancing formability of aluminium alloys by superimposing hydrostatic pressure 261

Formosa, F., Abou-Kandil, H., Reynier, M.,
Smart structures models updating .. 265

Fourment, L., Barboza, J., Popa, S.,
Master/slave algorithm for contact between deformable bodies and axial symmetries — application to 3D metal forging .. 269

Fragakis, Y., Papadrakakis, M.,
A primal class of FETI methods applied to multiple right-hand side problems and implicit dynamic analysis in structural mechanics .. 273

François, M., Royer Carfagni, G.,
Damage mechanics model based on structured deformations ... 277

Furukawa, T., Yoshimura, S., Hoffman, M.,
Implicit material modeling for temperature-dependent viscoplasticity using multi-layer neural networks 280

Gallego, R., Comino, L., Ruiz-Cabello, A.,
Material constant sensitivity boundary integral equation for anisotropic solids 284

Gentilini, C., Nascimbene, R., Ubertini, F.,
Towards an alternative approach to geometrical modelling of shell surfaces using a parametric representation 288

Goh, A.T.C., Chua, C.G.,
Quantifying uncertainty in predictions using a Bayesian neural network .. 292

Grychanyuk, V., Tsukrov, I.,
Elastoplastic behavior of two-dimensional solids with mixed-mode cracks 295

Gunton, A.J., Scott, M.L., Thomson, R.S.,
Voxel modelling of 3D through-thickness reinforced composite laminates ... 299

Guo, Y.Q., Li, Y.M., Gati, W., Naceur, H.,
Sheet forming modeling by inverse approach and pseudo inverse approach with damage effects 304

Hadjesfandiari, A.R., Dargush, G.F.,
Weighted traction boundary element methods for strength analysis of bi-materials 308

Hall, R.L., Baylot, J.T.,
Overview of computational structural mechanics in the Department of Defense 313

Hartmann, S.,
On displacement control within the DIRK/MLNA approach in non-linear finite element analysis 316

Heninger, R.B., Larsen, R.C., Simmons, R.R.,
Seismic retrofit strategy, design, and construction of the San Francisco–Oakland Bay Bridge West Crossing 320

Hsieh, Y.-M., Whittle, A.J.,
A computational strategy for solving three-dimensional tunnel excavation problems 324

Hyčka, M.,
Generalized lateral bending analysis of thin-walled beams with branched cross-sections 329

Ibrahimbegović, A., Markovic, D., Brancherie, D.,
Micro–macro modeling of inelastic behavior of heterogeneous structures ... 333

Imbsen, R.A., Sarraf, M.,
Seismic response analysis of long-span bridges using nonlinear dynamic analysis techniques 337

Ingham, T.J.,
Nonlinear time history analysis of the Million Dollar Bridge ... 343

Javadi, A.A., Tan, T.P., Zhang, M.,
An intelligent finite element method for analysis of geotechnical problems ... 347
Joanni, A.E., Kausel, E.,
Diffusion in cylindrically layered materials using the thin-layer method .. 351

Jun, D., Petryna, Y., Bockhold, J., Stangenberg, F.,
A rational framework for damage analyses of concrete shells ... 356

Kamiński, M., Pawlik, M.,
Transient heat transfer in layered composites with random geometry ... 360

Kanapady, R., Sandhu, S.S., Tamma, K.K.,
A primal–dual constraint and order preserving technique for flexible multibody dynamical index-3 systems 364

Kapuria, S., Dumir, P.C., Ahmed, A.,
Assessment of a layerwise theory of hybrid beams for patch load .. 370

Karabalis, D.L., Stathopoulos, N.D.,
3D prestressed ring joints subjected to bending loads ... 374

Karhaloo, B.L., Xiao, Q.Z., Liu, X.Y.,
Direct determination of SIF and coefficients of higher order terms of mixed mode cracks 378

Kim, J.-H., Paulino, G.H.,
Stress intensity factors and T-stress in functionally graded materials: a unified approach using the interaction integral method ... 381

Klinkel, S., Sansour, C., Wagner, W.,
An anisotropic finite elastic–plastic model for fiber–matrix materials ... 387

Kögl, M., Bucalem, M.L.,
Locking-free piezoelectric MITC shell elements ... 392

Kolk, K., Kuhn, G.,
Acceleration of 3D crack growth simulations by the compression of BEM matrices via multipole methods . 396

Kompiš, V.,
Computational models using Trefftz functions ... 400

Krasowsky, A.A., Riedel, H., Schmitt, W., Benevolenski, O.I.,
Spring-back simulation based on characterization of sheet metals under reverse plastic strains 403

Krätzig, W.B.,
On classical shell theories, degenerated and solid shell concepts and layered models: comparison and overview . 407

Labbe, F., Donoso, J.R.,
Modeling of a 3D shallow surface crack in a nuclear pressure pipe by a three-term asymptotic solution: J–A_2 methodology ... 411

Lemonis, M.E., Gantes, C.J.,
Numerical analysis of simple and preloaded T-stub steel connections .. 414

Liu, G.R., Han, X.,
Recent progress on computational inverse techniques in non-destructive evaluation 418

Löblein, J., Schröder, J.,
Numerical aspects of a triangular finite element with an embedded discontinuity 422

Mariani, C., Venini, P., Nascimbene, R.,
Neural networks in computational damage mechanics .. 426

Mariano, P.M., Stazi, F.L.,
Linear elastic fullerene-based composites with random properties ... 429

Meggiolaro, M.A., Miranda, A.C.O., Castro, J.T.P., Martha, L.F.,
Numerical prediction of the propagation of branched fatigue cracks .. 432

Mejak, G.,
Elasto-plastic torsion of composite bars with imperfect bonding .. 436

Meierski, E.S.,
Flexural analysis of concrete retaining walls on rough elastic half-space ... 439
Meliani, S., Panasenko, G., Paoli, L.,
Theoretical and numerical study of a multi-scale model for composites 443

Messerklinger, S., Springman, S.M.,
Modelling the anisotropy of soft Swiss lacustrine clay .. 447

Meštrović, M.,
Generalized differential quadrature method for Timoshenko beam ... 451

Miller, R.E., Shilkrot, L., Curtin, W.A.,
A study of nano-indentation using coupled atomistic and discrete dislocation (CADD) modeling 455

Miranda, A.C.O., Meggiolaro, M.A., Castro, J.T.P., Martha, L.F.,
Finite element modeling of fatigue crack bifurcation .. 460

Mistakidis, E.S.,
Ultimate compressive strength of CHS members with flattened edges .. 464

Miyamura, T., Makinouchi, A.,
Application of the conjugate projected gradient method to large-scale contact problems 469

Mochonacki, B., Majchrzak, E.,
Sensitivity analysis of solidification process using the boundary element method (the micro–macro approach) ... 473

Mohanthy, P., Rixon, D.J.,
Operational dynamic testing in the presence of harmonic excitation ... 477

Moldovan, D., Haslam, A.J., Wolf, D.,
Multiscale simulation of grain growth in nanocrystalline materials .. 482

Möller, S.C., Vermeer, P.A., Bonnier, P.G.,
A fast 3D tunnel analysis ... 486

Momoh, R., Antony, S.J., Kuhn, M.R.,
Effect of grain shape on the shear deformation characteristics of granular media 490

Montans, F.J., Bathe, K.J.,
On the stress integration in large strain elasto-plasticity .. 494

Mori, K., Patwari, A.U., Maki, S.,
Finite element simulation of hammering hydroforming of tubes ... 498

Mori, K., Yoshimura, H., Otomo, Y.,
Parallel processing for 3D rigid–plastic finite element method using diagonal matrix 502

Nagai, M., Iwasaki, E., Nogami, K.,
Effect of inelastic behavior of cables on ultimate behavior and strength of a 600-m steel cable-stayed bridge .. 506

Nakagiri, S., Hoshi, Y., Yamada, T.,
Interval estimation of time-history response without use of direct time integration 509

Nawrat, A., Skorek, J.,
Novel approach for identification of the thermal resistance of the gas-gap between the ingot and mould in the continuous casting of metals .. 513

Nguyen, B.N., Khaleel, M.A.,
Prediction of damage in a randomly oriented short-fiber composite plate containing a central hole ... 519

Niggl, A., Düster, A., Rank, E.,
Coupling 1D and 2D elasticity problems by using the hp-d-version of the finite element method 523

Noels, L., Stainier, L., Ponthot, J.-P., Bonini, J.,
A new formulation of internal forces for non-linear hypoelastic constitutive models verifying conservation laws ... 527

Novak, M.E., Birgisson, B., McVay, M.,
Effects of vehicle speed and permeability on pore pressures in hot-mix asphalt pavements 532

O’Daniel, J.L.,
Modeling contact detonations with ALE3D and PARADYN ... 537
Of, G.,
A fast multipole boundary element method for the symmetric boundary integral formulation in linear elastostatics

Papados, P.P.,
Simulation of projectile impact on the composite armored vehicle

Papanikolas, P.,
The Rion–Antirion multispan cable-stayed bridge

Pardoén, T.,
Current challenges in the transfer to metal forming of top-down approaches to ductile fracture

Park, J., Kausel, E.,
Numerical dispersion of SH waves in the thin-layer method

Peerlings, R.H.J., Engelen, R.A.B., Mediavilla, J., Geers, M.G.D.,
A gradient-enhanced plasticity-damage approach towards modelling of forming processes

Pellicano, F., Amabili, M.,
Nonlinear dynamics and stability of compressed circular cylindrical shells

Pfeiffer, F.G.,
On unilateral roller coasters

Phoon, K.K., Toh, K.C., Chan, S.H., Lee, F.H.,
A generalised Jacobi preconditioner for finite element solution of large-scale consolidation problems

Pichler, Ch., Lackner, R., Mang, H.A.,
Continuum-micromechanics approach for determination of frost heave in artificial ground freezing

Pilner, R.,
Solution representations for Trefftz-type plate bending elements

Poizat, Ch., Campagne, L., Daridon, L., Husson, Ch., Merle, L., Ahzi, S.,
Modelling and simulation of thin sheet blanking

Popov, A.A.,
The application of spring pendulum analogies to the understanding of nonlinear shell vibration

Puzrin, A.M., Randolph, M.F.,
Recent advances in the upper bound limit analysis of Tresca’s material

Raman, A., Hansen, M.H., Mote Jr., C.D.,
Post-flutter dynamics of a rotating disk

Reese, S.,
On a new reduced integration technology for thin structures in finite inelasticity

Riou, H., Ladevèze, P., Rouch, P.,
The variational theory of complex rays for medium-frequency vibrations of shells

Saanouni, K., Belamri, N., Khelifa, M., Badreddine, H., Cherouat, A.,
Finite anisotropic plastic flow with ductile damage for sheet metal forming simulation

Sadowski, T., Samborski, S.,
On the different behaviour of porous ceramic polycrystalline materials under tension and compression stress state

Sagasta, C., Houlsby, G.T., Burd, H.J.,
Quasi-static undrained expansion of a cylindrical cavity in clay in the presence of shaft friction and anisotropic initial stresses

Sapountzakis, E.J., Mokos, V.G.,
Warping shear stresses in nonuniform torsion in bridge decks of materials in contact by BEM

Schenk, O., Selig, M.,
Advancing crash forming analysis capabilities through solver technology

Schütt, J., Wagner, W.,
A 3D-plasticity model for the description of concrete and its 3D-FE implementation
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severino, E., El-Tawil, S., Collision of vehicles with bridge piers</td>
<td>637</td>
</tr>
<tr>
<td>Silling, S.A., Dynamic fracture modeling with a meshfree peridynamic code</td>
<td>641</td>
</tr>
<tr>
<td>Smajlovic, I., Soric, J., On damage modelling of laminated composite shells subjected to low velocity impact</td>
<td>645</td>
</tr>
<tr>
<td>Song, C., Dynamic stiffness of foundations embedded in anisotropic half spaces</td>
<td>648</td>
</tr>
<tr>
<td>Stefanou, G., Papadrakakis, M., Finite element analysis of shells with multiple random material and geometric properties</td>
<td>652</td>
</tr>
<tr>
<td>Štiaňvický, M., Kompiš, V., Rigid inclusions solved using non-singular reciprocity based BEM</td>
<td>656</td>
</tr>
<tr>
<td>Stumpf, H., Makowski, J., Gorski, J., Hackl, K., Gradient theories of ductile and brittle damage: a thermodynamical consistent framework and computational issues</td>
<td>659</td>
</tr>
<tr>
<td>Szopa, R., Mochtacki, B., The sensitivity of continuous casting solidification with respect to boundary conditions</td>
<td>666</td>
</tr>
<tr>
<td>Scibinski, B., Karas, M., Zielinski, A.P., Thin-walled spatial structures optimized using Trefftz-type finite elements</td>
<td>670</td>
</tr>
<tr>
<td>Taiebat, H.A., Carter, J.P., Contact between soil and circular foundations under eccentric loading</td>
<td>674</td>
</tr>
<tr>
<td>Tan, X.G., Vu-Quoc, L., Nonlinear numerical dissipative elastodynamics of an optimal solid shell element</td>
<td>678</td>
</tr>
<tr>
<td>Thuramalla, N.V., Khraisheh, M.K., Effects of microstructural evolution on the stability of superplastic deformation</td>
<td>683</td>
</tr>
<tr>
<td>Tijssens, M.G.A., James, R.D., Towards a continuum theory for phase transformations using atomistic calculations</td>
<td>687</td>
</tr>
<tr>
<td>Toma, M., Kompiš, V., Use of Trefftz functions in modelling of point and line contact</td>
<td>690</td>
</tr>
<tr>
<td>Tong, W., Zhang, N., Xie, C., A kinematics perspective on the micro-to-macro transition in anisotropic plasticity modeling of polycrystalline solids</td>
<td>693</td>
</tr>
<tr>
<td>Tosciano, R.G., Gonzalez, M., Dvorkin, E.N., Experimental validation of a finite element model that simulates the collapse and post-collapse behavior of steel pipes</td>
<td>696</td>
</tr>
<tr>
<td>Touzé, C., Thomas, O., Chaigne, A., Non-linear oscillations of continuous systems with quadratic and cubic non-linearities using non-linear normal modes</td>
<td>701</td>
</tr>
<tr>
<td>Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D., Beskos, D.E., Static analysis of 3-D gradient elastic solids by BEM</td>
<td>705</td>
</tr>
<tr>
<td>Uetsuji, Y., Nakamura, Y., Ueda, S., Nakamachi, E., Multi-scale finite element analysis of piezoelectric materials based on crystallographic homogenization method</td>
<td>709</td>
</tr>
<tr>
<td>van Dommelen, J.A.W., Brekelmans, W.A.M., Baaijens, F.P.T., Multiscale modeling of particle-modified semicrystalline polymers</td>
<td>713</td>
</tr>
<tr>
<td>Veneziano, D., Linear elasticity with isotropic lognormal Young's modulus: localization of stresses and strains and effective stiffness tensor</td>
<td>718</td>
</tr>
</tbody>
</table>
Villa, A., De Masi, B., Corigliano, A., Frangi, A., Comi, C.,
Mechanical characterization of epitaxial polysilicon in MEMS 722

vonach, w.k., rammerstorfer, f.g.,
Face layer wrinkling in sandwich shells of general configuration 727

Wang, H., Yao, Z,
Simulation of 2D elastic solid with large number of inclusions using fast multipole BEM 732

Waszczyszyn, Z., Ziemiański, L.,
Neurocomputing and experimental structural mechanics: some new results 737

Watson, J.O.,
Boundary element computation of crack root stress fields in three dimensions 742

Wijerathne, M.L.L., Oguni, K., Hori, M.,
3D stress field tomography based on photoelasticity 746

Witkański, C., Koskina, M., Schweiger, H.F.,
An advanced constitutive model for normally consolidated clays based on multilaminate framework 751

Wolfe, R.W., Farran, H.J., Henninger, R.B.,
A dynamic analysis of cable vibration control on cable-stayed bridges 755

Wróblewski, A., Zieliński, A.P.,
Survey and applications of special purpose T-complete systems 759

Xiao, Z.M., Zhao, J.F.,
Electro-elastic stress analysis for a Zener–Stroh crack at the interface of a piezoelectric material bonding to a metal .. 762

Xing, H.L., Mora, P., Mokinouche, A.,
Finite element modeling of nonlinear frictional instability between deformable bodies 766

Yamada, S., Uchiyama, M.,
Simulation of buckling tests using a mixed FEM for pressurized shallow spherical shells and the reduced stiffness analysis .. 770

Yan, L., Khraishi, T.A., Shen, Y.-L., Horstemeyer, M.F.,
A numerical method for the treatment of image stresses in dislocation dynamics simulations 776

Yasumitsu, R., Natori, M.C., Nishinari, K.,
Dynamical analysis of a thin flexible rod with both bending and torsional effects 780

Zastrau, B., Schlebusch, R., Matheas, J.,
Special aspects of surface-related shell theories with application to contact problems .. 787

Zhou, X., Tamma, K.K., Sha, D.,
A forward incremental displacement semi-explicit unconditionally stable dynamic frictional contact-impact formulation 791

Zhu, T., Li, J., Van Vliet, K.J., Yip, S., Suresh, S.,
Simulation of nanoindentation via interatomic potential finite element method 795

Zhu, Z.H., Meguid, S.A., Ong, L.S.,
Dynamic multiscale simulation of towed cable and body 800

Evaluation of continuum stress in atomistic simulation 804

Fluids

Abdelfattah, A., Durst, B., Huebner, W., Kern, W.,
Fuel-stratification in automotive engines with vortical flow structures: an engineering approach with numerical and experimental methods 810
Aboubacar, M., Tamaddon-Jahromi, H.R., Webster, M.F.,
Time-dependent algorithms for viscoelastic flow: bridge between finite-volume and finite-element methodology .. 815
Al-Mdallal, Q., Kocabiyik, S.,
Flow induced by superposed oscillations of a circular cylinder .. 819
Albukrek, C.M., Batishcheva, A., Ghoniem, A.,
Parallel fast solver based on vortex element method .. 822
Alves, M.A., Oliveira, P.J., Pinho, F.T.,
Numerical simulation of viscoelastic contraction flows .. 826
Ayyalasomayajula, H., Kumar Mutnuri, P., Ghia, K., Ghia, U.,
Analysis of higher-order compact differencing scheme by studying flow past a circular cylinder .. 830
Baker, A.J., Kolesnikov, A.,
High-order stabilization for Navier–Stokes CFD algorithms .. 834
Barry, K.M., Mehta, A.J.,
Quasi-hydrodynamic lubrication effect of clay particles on sand bed erosion .. 837
Benim, A.C., Cagan, M.,
Investigation into the fluid dynamics of a droplet in gas flow .. 840
Bertrand, F., Giguère, R., Tanguy, P.A.,
Recent progress on the modeling of complex flows in twin-screw extrusion .. 843
Blackmore, D., Ting, L.,
Vorticity jumps across shock surfaces .. 847
Bogaerts, A.C.B., Hulsen, M., Peters, G., Baaijens, F.P.T.,
The elastic instability of fountain flows .. 850
Bottasso, C.L., Detomi, D.,
Plain Galerkin schemes that work well for the advection–diffusion problem .. 853
Breuer, M., Jovičić, N.,
Vortex formation and shedding from an airfoil at high angle of attack: a numerical study .. 858
Carregal Ferreira, J., Bender, R., Forkel, H.,
A presumed PDF-ILDM model for the CFD-analysis of turbulent combustion .. 862
Carretero, J.A., Martinez-Sanchez, M.,
Numerical simulation of a single-emitter colloidal jet .. 866
Cheng, W., Wanzhi, W., Shourong, Y.,
Algorithm study on interface tracking in Eulerian code .. 869
Cueto-Felgueroso, L., Colominas, I., Mosquera, G., Navarrina, F., Casteleiro, M.,
An MLSPH algorithm for free surface flows in engineering applications .. 873
Dabrowski, T., Hartnett, M., Berry, A.,
Modelling hydrodynamics of Irish Sea .. 877
Dargush, G.F., Grigoriev, M.M.,
Boundary element methods for highly convective unsteady flows .. 882
Dawson, C., Pothina, D., Proft, J.,
Shallow water modeling using discontinuous and coupled finite element methods .. 886
De, S., Sengupta, T.K.,
Proper orthogonal decomposition of by-pass transition data .. 889
Epstein, B., Peigin, S.,
Application of WENO (weighted essentially non-oscillatory) method to computational aerodynamics .. 893
Ganeriwal, G., Sengupta, T.K.,
High accuracy compact schemes and Gibbs’ phenomenon .. 898
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnier, F., Ferreira Gago, C., Application of compact finite-difference methods to numerical simulation of a non-isothermal turbulent jet</td>
<td>904</td>
</tr>
<tr>
<td>George, E., Glimm, J., Li, X., Xia, Z., Simulation of fluid mixing in acceleration driven instabilities</td>
<td>908</td>
</tr>
<tr>
<td>Glimm, J., Li, X., Kim, M.-N., Oh, W., Marchese, A., Samulyak, R., Tzanos, C., Jet breakup and spray formation in a diesel engine</td>
<td>912</td>
</tr>
<tr>
<td>Gravemeier, V., Wall, W.A., Ramm, E., Numerical solution of the incompressible Navier–Stokes equations by a three-level finite element method</td>
<td>915</td>
</tr>
<tr>
<td>Greif, D., Wiesler, B., Alajbegovic, A., Two-phase tank filling simulations of an automobile tank system</td>
<td>919</td>
</tr>
<tr>
<td>Grillet, A.M., Bogaerts, A.C.B., Baaijens, F.P.T., The importance of assessing the stability predictions of polymer melt constitutive equations</td>
<td>923</td>
</tr>
<tr>
<td>Halid, S., Modeling hydrodynamic focusing of liquid jets in microchannels</td>
<td>927</td>
</tr>
<tr>
<td>Hernlund, J.W., Tackley, P.J., Three-dimensional spherical shell convection at infinite Prandtl number using the ‘cubed sphere’ method</td>
<td>931</td>
</tr>
<tr>
<td>Iafrati, A., Campana, E.F., Surface ripples generated by spilling breakers</td>
<td>934</td>
</tr>
<tr>
<td>Ismail-Zadeh, A.T., Korotkii, A.I., Tsepelev, I.A., Numerical approach to solving problems of slow viscous flow backwards in time</td>
<td>938</td>
</tr>
<tr>
<td>Jinnah, M.A., Takayama, K., Numerical simulation of strength of turbulence effect on normal shock/homogeneous turbulence interaction</td>
<td>942</td>
</tr>
<tr>
<td>Kanarska, Yu., A three-dimensional non-hydrostatic numerical model of free-surface stratified flows</td>
<td>946</td>
</tr>
<tr>
<td>Kennedy, A.B., Shi, F., Kirby, J.T., Time-dependent wave forcing in computational nearshore hydrodynamics</td>
<td>956</td>
</tr>
<tr>
<td>King, J.N., Sheng, Y.P., A comparison of advection schemes in variable-density, highly conductive, ground water domains</td>
<td>961</td>
</tr>
<tr>
<td>Kleine Jäger, F., Köhne, H., CFD modelling in process burner development: combustion of light residual fuel oils</td>
<td>966</td>
</tr>
<tr>
<td>Knio, O., Ting, L., Klein, R., Theory of slender compressible vortex filaments</td>
<td>971</td>
</tr>
<tr>
<td>Kokh, A.E., Mironova, L.A., Popov, V.N., Numerical modeling of incompressible viscous flows: single crystal growth through the heat field rotation method</td>
<td>974</td>
</tr>
<tr>
<td>Kraginsky, L.M., Oparin, A.M., Parallel framework for numerical modeling of the problems described by hyperbolic equations with applications in atmosphere flows modeling</td>
<td>978</td>
</tr>
<tr>
<td>Krause, E., Axial flow in slender vortices</td>
<td>984</td>
</tr>
<tr>
<td>Leitner, R., Müller, H., CFD studies for boilers</td>
<td>988</td>
</tr>
<tr>
<td>Lin, P., Regularization formulations and explicit temporal discretization for the incompressible Navier–Stokes equations</td>
<td>997</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Liu, H.</td>
<td>1001</td>
</tr>
<tr>
<td>Approximation of singular concentration in compressible flows</td>
<td></td>
</tr>
<tr>
<td>Livermore, P., Jackson, A.</td>
<td>1004</td>
</tr>
<tr>
<td>The growth of magnetic field energy in conducting fluids</td>
<td></td>
</tr>
<tr>
<td>Ma, T., Wang, S.</td>
<td>1008</td>
</tr>
<tr>
<td>Rigorous characterization of boundary layer separations</td>
<td></td>
</tr>
<tr>
<td>Malidi, A., Dufour, S.</td>
<td>1011</td>
</tr>
<tr>
<td>A numerical strategy for accurate free surface capturing</td>
<td></td>
</tr>
<tr>
<td>Marshall, J.S.</td>
<td>1016</td>
</tr>
<tr>
<td>Toward an arbitrary Lagrangian–Eulerian vorticity transport method</td>
<td></td>
</tr>
<tr>
<td>Marzouk, Y.M., Ghoniem, A.F.</td>
<td>1020</td>
</tr>
<tr>
<td>Vorticity generation mechanisms and correct boundary conditions for</td>
<td></td>
</tr>
<tr>
<td>transverse jet simulation</td>
<td></td>
</tr>
<tr>
<td>McInnes, L., Norris, B., Bhownick, S., Raghavan, P.</td>
<td>1024</td>
</tr>
<tr>
<td>Adaptive sparse linear solvers for implicit CFD using Newton–Krylov</td>
<td></td>
</tr>
<tr>
<td>algorithms</td>
<td></td>
</tr>
<tr>
<td>Mihalffy, P., Steinberger, B.</td>
<td>1029</td>
</tr>
<tr>
<td>Two models in one: mantle flow modeling on different scales beneath</td>
<td></td>
</tr>
<tr>
<td>the North Atlantic</td>
<td></td>
</tr>
<tr>
<td>The modeling of bubbly flows around naval surface ships at high</td>
<td></td>
</tr>
<tr>
<td>Reynolds numbers</td>
<td></td>
</tr>
<tr>
<td>Morgan, P.L., Armfield, S.W.</td>
<td>1037</td>
</tr>
<tr>
<td>Buoyant horizontal jets in a stratified medium</td>
<td></td>
</tr>
<tr>
<td>Mueller, C.</td>
<td>1040</td>
</tr>
<tr>
<td>CFD based prediction of a turbulent nonpremixed methane flame using</td>
<td></td>
</tr>
<tr>
<td>a conditional moment closure approach</td>
<td></td>
</tr>
<tr>
<td>Mühlhaus, H.-B., Moresi, L., Ćada, M.</td>
<td>1044</td>
</tr>
<tr>
<td>Anisotropy model for mantle convection</td>
<td></td>
</tr>
<tr>
<td>Naitoh, K., Kuwahara, K., Krause, E.</td>
<td>1047</td>
</tr>
<tr>
<td>Cycle-resolved computations of compressible vortical flows in</td>
<td></td>
</tr>
<tr>
<td>automotive engines</td>
<td></td>
</tr>
<tr>
<td>Nikfetrat, K.</td>
<td>1051</td>
</tr>
<tr>
<td>Numerical simulation of flow in square ducts joined with a mitered 90° elbow</td>
<td></td>
</tr>
<tr>
<td>Nilsson, J., Gustafsson, B., Löstedt, P., Brüger, A.</td>
<td>1057</td>
</tr>
<tr>
<td>High order difference method on staggered, curvilinear grids for the</td>
<td></td>
</tr>
<tr>
<td>incompressible Navier–Stokes equations</td>
<td></td>
</tr>
<tr>
<td>Nitsche, M., Taylor, M.A., Krasny, R.</td>
<td>1062</td>
</tr>
<tr>
<td>Comparison of regularizations of vortex sheet motion</td>
<td></td>
</tr>
<tr>
<td>Nojima, K., Kawahara, M.</td>
<td>1066</td>
</tr>
<tr>
<td>An analysis of wind environment around buildings with unstructured</td>
<td></td>
</tr>
<tr>
<td>mesh generation technique</td>
<td></td>
</tr>
<tr>
<td>Ogami, Y.</td>
<td>1072</td>
</tr>
<tr>
<td>Study of LES model for the vortex method</td>
<td></td>
</tr>
<tr>
<td>Olshanskii, M.A.</td>
<td>1074</td>
</tr>
<tr>
<td>Preconditioned iterations for the linearized Navier–Stokes system in</td>
<td></td>
</tr>
<tr>
<td>rotation form</td>
<td></td>
</tr>
<tr>
<td>Papaspyrou, S., Valougeorgis, D., Karamanos, S.A.</td>
<td>1078</td>
</tr>
<tr>
<td>Longitudinal sloshing effects in half full horizontal cylindrical</td>
<td></td>
</tr>
<tr>
<td>vessels</td>
<td></td>
</tr>
<tr>
<td>Pedro, G., Saleman, A., Djilali, N.</td>
<td>1083</td>
</tr>
<tr>
<td>Numerical study of a pitching and heaving hydrofoil</td>
<td></td>
</tr>
<tr>
<td>Petre, C.F., Larachi, F., Iliuta, I., Grandjean, B.</td>
<td>1087</td>
</tr>
<tr>
<td>Tailoring the pressure drop of structured packings through CFD</td>
<td></td>
</tr>
<tr>
<td>simulations</td>
<td></td>
</tr>
<tr>
<td>Pirozzoli, S.</td>
<td>1092</td>
</tr>
<tr>
<td>Upwind weighted compact schemes for advection equations</td>
<td></td>
</tr>
</tbody>
</table>
Pitsch, H., Duchamp de Lageneste, L.,
Large-eddy simulation of premixed turbulent combustion .. 1096

Remacle, J.-F.,
Transient adaptive discontinuous Galerkin method with anisotropic meshes 1100

Riabov, V.V.,
Applications of exponential box schemes for viscous flows with combustion and blowing 1102

Riccardi, G., Iafrati, A.,
Vortex shedding due to water impact of an asymmetric wedge ... 1106

Rubinstein, R.,
A statistical model of laminar–turbulent transition .. 1109

Schneider, S.,
Fast multipole method for acoustic radiation problems in three dimensions 1112

Schötzau, D.,
Local discontinuous Galerkin methods for incompressible flow ... 1116

Sengupta, T.K., Anuradha G., De, S.,
Navier–Stokes solution by new compact schemes for incompressible flow 1119

Serre, E., Schäfer, M., Bontoux, P.,
Vortex breakdown in a cylinder with a free surface ... 1125

Seveto, D., Martic, G., Gentner, F., Voûé, M., De Coninck, J.,
Microfluidics and wetting: evidence of several time scales .. 1128

Shi, X., Khodadadi, J.M.,
Transient evolution to periodic fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin ... 1131

Sibilla, S., Beretta, C.P.,
Near-wall coherent structures in the turbulent channel flow of a dilute polymer solution 1135

Smirnov, S., Ramboer, J., Lacor, C.,
Finite volume formulation of compact upwind and central schemes with artificial selective damping ... 1140

Tadjfar, M.,
Influence of bifurcation angle on flow into a branch ... 1144

Tai, C.H., Zhao, Y., Liew, K.M.,
Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multi-grid method ... 1148

Tanner, R.I., Xue, S.-C.,
Computing transient viscoelastic flows .. 1153

Thomer, O., Klaas, M., Schroeder, W., Krause, E.,
Oblique shock–vortex interaction over a wedge .. 1156

Tiwari, P., Antal, S.P., Podowski, M.Z.,
On the modeling of dispersed particulate flows using a multifield model 1160

Tryggvason, G., Fernández, A., Lu, J.,
The effect of electrostatic forces on droplet suspensions ... 1166

Tsepelev, I.A., Korotkii, A.I., Ismail-Zadeh, A.T.,
Numerical approach to 3D forward modeling of slow viscous flow 1169

Uhlman, J.S.,
Calculation of the sound generated by the head-on collision of two vortex rings 1172

Ujang, P.M.,
A three-dimensional study of Taylor bubble turning in two phase downflow 1176

van der Ven, H., van der Vegt, J.J.W., Bouwman, E.G.,
Space-time discontinuous Galerkin finite element method for inviscid gas dynamics 1181
Volkov, K.N.,
Large eddy simulation of non-isothermal turbulent gas–particle jets ... 1185

Wagner, S.N., Kessler, M., Pomin, H.,
Vortical flow phenomena on helicopter rotors ... 1189

Wang, Z.J.,
The spectral volume method for the Euler equations with high-order boundary representations 1193

Weiland, C.,
Vortex phenomena in flows for reusable launch vehicles ... 1197

Xu, K.,
Kinematic and dynamic dissipation in shock capturing schemes .. 1201

Yi, T., Wee, D., Annaswamy, A., Ghoniem, A.F.,
Self-sustained oscillations in separating flows: simulation and stability analysis 1205

Zhang, J., Sun, H.,
A sixth order finite difference scheme for the convection diffusion equation 1209

Zhang, X., Blaisdell, G.A., Lyrintzis, A.S.,
High-order compact schemes with filters on multi-block domains .. 1212

Zhang, Y.-T., Shi, J., Shu, C.-W., Zhou, Y.,
Resolution of high order WENO schemes and Navier–Stokes simulation of the Rayleigh–Taylor instability problem ... 1216