11th European Conference on Mixing

637th Event of the European Federation of Chemical Engineering
Bamberg, Germany, 14-17 October 2003

Preprints

edited by
VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (VDI-GVC)
D-40002 Düsseldorf
Contents

Preface I
Silver Jubilee of the Working Party on Mixing of the EFCE III
Index of Symbols XII

Lectures

Plenary Lecture

PL
M. Sommerfeld, S. Decker, Universität Halle-Wittenberg, D-Merseburg
State of the art and future trends in CFD simulation of stirred vessels 1

Session 1: Turbulence Characteristics in Stirred Systems

1.1 S. Baldi, A. Ducci, M. Yianneskis, King's College London, UK-London
Determination of dissipation rate in stirred vessels through direct measurement of fluctuating velocity gradients 21

1.2 J. Kilander, A. Rasmuson, Chalmers University of Technology, S-Göteborg
Hydrodynamics in a stirred square tank investigated using a 3D PIV LES decomposition approach and LDA measurements 31

Large Eddy Simulation of turbulent flow in Rushton impeller stirred reactor with a sliding-deforming mesh methodology 39

1.4 F. R. Khan, C. D. Rielly, G. K. Hargrave, Loughborough University, UK-Loughborough
A multi-block approach to obtain angle-resolved PIV measurements of the mean flow and turbulence fields in a stirred vessel 47

1.5 I. Baldyga, L. Makowski, Warsaw University of Technology, PL-Warsaw
CFD modeling of mixing effects on the course of parallel chemical reactions carried out in a stirred tank 55

Session 2: Advanced Measurement Techniques

2.1 K. Kling, D. Mewes, University of Hannover, D-Hannover
Quantitative measurements of micro- and macromixing using two-colour laser induced fluorescence 63

2.2 J. F. Hall, M. Barigou, M. J. H. Simmons, University of Birmingham, UK-Birmingham; E. H. Stitt, Johnson Matthey Catalysts, UK-Billingham
Flow patterns in mechanically agitated high throughput experimentation (HTE) reactors 71

2.3 A. Fall, O. Lecoq, R. David, Laboratoire de génie des Procédés des Solides Divisés, F-Albi
Application of PLIF-technique to characterize the mixing of miscible liquid flows in two innovative contact devices: a 90°-impinging-jet and a sheathed feed mixer 79
Session 3: Micromixing in Precipitation Processes

3.1 J. Baidyga, A. Krasinski, M. Jasinska, A. Rzen, Warsaw University of Technology, PL-Warsaw
Agitation and mixing effects in agglomerative precipitation
87

3.2 B. Judat, A. Racina, M. Kind, University of Karlsruhe, D-Karlsruhe
Macro- and micromixing in a TAYLOR-COUETTE reactor with axial flow and their influence on the precipitation of barium sulfate
95

3.3 A. Paschedag, University of Technology Berlin, D-Berlin
Modeling of mixing and precipitation using CFD and population balances
103

3.4 H.-C. Schwarzer, M. Manhart, University of Technology Munich, D-Garching
W. Peukert, University Erlangen-Nuremberg, D-Erlangen
Characterization of mixing in a T-mixer: A combined experimental and numerical study
113

Session 4: Solid/Liquid Systems

4.1 J. J. Derksen, Delft University of Technology, NL-Delft
Simulation of solid particle dispersion in agitated tanks
121

4.2 T. Virdung, A. Rasmuson, Chalmers University of Technology, S-Goteborg
PIV Measurements of solid-liquid mixing at elevated concentrations
129

4.3 W. F. C. van Wageningen, R. F. Mudde, H. E. A. van den Akker, Delft University of Technology, NL-Delft
Numerical investigation into mixing of particle-laden flows in a Kenics static mixer
137

4.4 S. Castellino, F. Scargiali, F. Grisafi, A. Brucato, University of Palermo, I-Palermo; J. Cermakov, V. Macho, Prague Institute of Chemical Technology, CZ-Prague
Residence time distribution of solid particles in a high-aspect ratio multiple-impeller stirred vessel
145

Some experiments on the unsteady behavior of continuous stirred vessels with slurries
153

Session 5: Special Apparatuses

5.1 H. Brod, U. Liesenfelder, Bayer Technology Services GmbH, D-Leverkusen
The mixing efficiency of an eccentric-disc kneading zone in fully intermeshing co- and counter-rotating twin screw extruders
161

5.2 P. Forschner, D. Houlton, R. Krebs, EKATO Rühr- und Mischtechnik GmbH, D-Schopfheim; R. Klepper, EKATO Corporation, USA-Salt Lake City; V. Kassera, CFD Consultants, D-Rottenburg
Design of horizontal vessels operated as CSTR – basic mixing tasks, RTD, productivity
169

5.3 S. Foucault, G. Ascanio, P. A. Tanguy, Ecole Polytechnique, CAN-Montreal
Coaxial mixer hydrodynamics with non-Newtonian rheologically complex fluids and suspensions
177
<table>
<thead>
<tr>
<th>Session 6: Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 X. Huang, Z. Wang, L. Shi, Beijing University of Chemical Technology, CHN-Beijing; D. Xu, Daqing EOR Equipment Corporation, CHN-Daqing; Y. Chen, Technical Center of Daqing Petroleum Administrative Bureau, CHN-Daqing Numerical simulation of temperature profiles in a stirring vessel with vertical heating tubes</td>
</tr>
<tr>
<td>6.2 V. V. Ranade, National Chemical Laboratory, IND-Pune Modeling of flow, mixing and heat transfer in continuous bulk polymerization reactor for styrene acrylonitrile copolymer</td>
</tr>
<tr>
<td>6.3 B. Zakrzewska, Z. Jaworski, Technical University of Szczecin, PL-Szczecin CFD modeling of the turbulent heat transfer in a jacketed stirred vessel</td>
</tr>
<tr>
<td>6.4 S. Jahnke, N. Kornev, A. Leder, E. Hassel, University of Rostock, D-Rostock LES simulation of jet mixing processes with heat transfer in turbulent pipe flow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 7: Liquid/Liquid Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 F. J. E. Svensson, A. Rasmuson, Chalmers University of Technology, S-Gothenburg LDA-measurements in a stirred tank with a liquid-liquid system at high volume percentage dispersed phase</td>
</tr>
<tr>
<td>7.2 M. Kraume, A. Gäbler, K. Schulze, University of Technology Berlin, D-Berlin Influence of physical properties and agitation conditions on drop size distributions of stirred liquid/liquid dispersions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 8: Gas/Liquid Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 H. Majírova, V. Machoň, Institute of Chemical Technology, CZ-Prague; D. Pinelli, F. Magelli, University of Bologna, I-Bologna Gas flow behaviour in a two-phase sparged reactor stirred with multiple turbines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 9: Micromixers</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 E. B. Nauman, A. Nigam, Rensselaer Polytechnic Institute, USA-Troy Mixing in sub-micron ducts</td>
</tr>
</tbody>
</table>
Contents

9.3 M. Hoffmann, N. Räbiger, M. Schlüter, University of Bremen, D-Bremen; S. Blazy, D. Bothe, C. Stemich, A. Warnecke, University of Paderborn, D-Paderborn
Experimental and numerical investigations of T-shaped micromixers 269

9.4 M. Engler, C. Föll, N. Kockmann, P. Woias, University of Freiburg, D-Freiburg
Investigations of liquid mixing in static micro mixers 277

Posters

P 1 H. Hartmann, J. J. Derksen, H. E. A. van den Akker, Delft University of Technology, NL-Delft
An LES investigation of the flow macro-instability in a Rushton turbine stirred tank 285

P 2 J. Vanags, U. Viesturs, Latvian State Institute of Wood Chemistry, LV-Riga
Local mixing control in a laboratory bioreactor with an electromagnetic drive 293

P 3 S. Schütz, M. Piesche, University of Stuttgart, D-Stuttgart
Numerical investigation on the macro- and micromixing in miscible, highly viscous liquids 299

P 4 C. Galletti, A. Paglianti, University of Pisa, I-Pisa, K. C. Lee, M. Yianneskis, King's College London, UK-London
Macro-instability phenomena in stirred vessels in the laminar, transitional and turbulent flow regimes 307

P 5 T. Berger, K. Strohmeier, University of Technology Munich, D-Garching
Structural dynamic analysis of stirrers with a fluid-structure-coupling algorithm in CFD 315

P 6 A. Rożeń, J. Bałdyga, Warsaw University of Technology, PL-Warsaw
Study of reactive micromixing of liquids differing in viscosity in laminar flows 323

P 7 S. D. Vlaev, P. Staykov, Bulgarian Academy of Sciences, BG-Sofia, St. Kraitschev, Technical University Sofia, BG-Sofia
Numerical analysis of the drag-reducing performance of blade shape in stirred power law fluids 331

P 8 J. Aubin, J. Bertrand, C. Xuereb, Laboratoire de Génie Chimique, F-Toulouse; D. F. Fletcher, University of Sydney, AUS-Sydney
Effect of geometry on the mixing quality in micromixers 339

P 10 R. Angst, E. Harnack, M. Singh, M. Kraume, University of Technology Berlin, D-Berlin
Grid and model dependency of the solid/liquid two phase flow CFD simulations of stirred vessels 347

P 11 L. Vicum, M. Mazzotti, ETH, Swiss Federal Institute of Technology, CH-Zürich; J. Baldyga, Warsaw University of Technology, PL-Warsaw
Modeling of barium sulfate mixing-precipitation processes 355

P 12 J. Bałdyga, M. Henczka, R. Czarnocki, D. Kubicki, Warsaw University of Technology, PL-Warsaw; K. Smith, Nektar Therapeutic UK Ltd, UK-Bradford
Modeling of turbulent mixing under supercritical conditions—application to particle formation 363
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors and Affiliations</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 13</td>
<td>D. L. Marchisio, R.O. Fox, Iowa State University, USA-Ames; T.-C. Cheng, E. Stroefer, A. Woelfert, BASF AG, D-Ludwigshafen</td>
<td>CFD study of fine particle nucleation, growth and agglomeration</td>
</tr>
<tr>
<td>P 15</td>
<td>L. Slemenik Perš, M. Žumer, University of Ljubljana, SL-Ljubljana</td>
<td>Laminar mixing of high-viscosity polysaccharide systems</td>
</tr>
<tr>
<td>P 16</td>
<td>B. Lemoigne, S. Neveu, Rhodia, F-Aubervilliers; H. Muhr, E. Plasari, Ecole Nationale Supérieure des Industries Chimiques – INPL, F-Nancy</td>
<td>Study on mixing time of viscous and non-viscous fluids in a new sliding surface mixing device</td>
</tr>
<tr>
<td>P 17</td>
<td>M. Micheletti, L. Nikiforaki, K.C. Lee, M. Yianneskis, King’s College London, UK-London</td>
<td>Integral parameter and local concentration characteristics of moderate to dense solid-liquid suspension</td>
</tr>
<tr>
<td>P 19</td>
<td>J. Stelmach, E. Rzyski, A. Kanla, Technical University of Łódź, PL-Łódź</td>
<td>Energy dissipation on the level of a self-aspirating disk impeller</td>
</tr>
<tr>
<td>P 20</td>
<td>J. Stelmach, C. Kunczewicz, A. Kanla, Technical University of Łódź, PL-Łódź</td>
<td>Gas bubble size distribution for a self-aspirating disk impeller</td>
</tr>
<tr>
<td>P 22</td>
<td>D. Zhao, J. M. Smith, University of Surrey, UK-Guildford; Z. Gao, Beijing University of Chemical Technology, CHN-Beijing; H. Müller-Steinhagen, University of Stuttgart, D-Stuttgart</td>
<td>Power characteristics and liquid mixing times in sparged and boiling reactors with multiple impeller agitators</td>
</tr>
<tr>
<td>P 23</td>
<td>G. Montante, F. Magelli, University of Bologna, I-Bologna</td>
<td>CFD Modelling of particle distribution in a vessel stirred by multiple impellers: the case of pseudoplastic liquids</td>
</tr>
<tr>
<td>P 24</td>
<td>J. Karcz, M. Cudak, Technical University of Szczecin, PL-Szczecin,</td>
<td>Local momentum and heat transfer in a liquid and gas-solid-liquid systems mechanically stirred in a jacketed vessel</td>
</tr>
<tr>
<td>P 25</td>
<td>J. Kamienski, R. Wojtowicz, Cracow University of Technology, PL-Kraków</td>
<td>Drop size and drop size distribution during dispersion of liquid-liquid systems in a vibromixer</td>
</tr>
<tr>
<td>P 26</td>
<td>I. Adamiak, Z. Jaworski, Technical University of Szczecin, PL-Szczecin</td>
<td>Turbulent flow at low Reynolds number of a non-Newtonian fluid in an SMX static mixer</td>
</tr>
<tr>
<td>P 27</td>
<td>F. Lavanchy, S. Fortini, Th. Meyer, Swiss Federal Institute of Technology, CH-Lausanne</td>
<td>Heat transfer in supercritical reaction calorimetry</td>
</tr>
<tr>
<td>Page</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>J. Karcz, R. Siciarz, I. Bielka,</td>
<td>A study of gas - liquid dispersion in a stirred tank equipped with dual impellers</td>
</tr>
<tr>
<td>29</td>
<td>A. R. Khopkar, V. V. Ranade,</td>
<td>Differences and similarities of gas-liquid flow generated by down-flow, paddle and up-flow turbines</td>
</tr>
<tr>
<td>30</td>
<td>O. Gnotke, R. Loth,</td>
<td>Experimental validation of coalescence and break-up rates in gas-liquid flows</td>
</tr>
<tr>
<td>31</td>
<td>F. Rieger, T. Jirout, P. Ditl, B. Kysela,</td>
<td>The effect of concentration on axial impeller speed for particle suspension</td>
</tr>
<tr>
<td></td>
<td>R. Sperling, S. Jembere,</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>W. Podgórnska,</td>
<td>Experimental study of coalescing liquid-liquid dispersions</td>
</tr>
<tr>
<td>34</td>
<td>T. Jirout, F. Rieger,</td>
<td>Electrochemical measurement of impeller speed for off-bottom suspension</td>
</tr>
<tr>
<td></td>
<td>V. Sobolík,</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>M. Fujasová, T. Moucha, V. Linek,</td>
<td>Transport characteristics of multiple-Narcissus impellers in gas-liquid dispersions</td>
</tr>
<tr>
<td>37</td>
<td>S. Köhler, W. Hemmerle,</td>
<td>Analysis of the power characteristic of a coaxial agitator with varied diameter and speed ratio of inner and outer mixing device</td>
</tr>
<tr>
<td>38</td>
<td>J. Markopoulos, E. Tsiliopoulou,</td>
<td>Power consumption in agitated vessels with dual Rushton turbines:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>baffle length and impeller spacing effects</td>
</tr>
<tr>
<td>39</td>
<td>P. N. Jones, G. N. Özean-Taskin,</td>
<td>Blending liquids of different physical properties</td>
</tr>
<tr>
<td>40</td>
<td>Z. Gao, G. Niu, L. Shi,</td>
<td>Mixing in stirred tanks with multiple hydrofoil impellers</td>
</tr>
<tr>
<td></td>
<td>J. M. Smith,</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>H. Brod, T. König,</td>
<td>The frequency distribution of loop passages in ideally mixed vessels with external loop: comparison of batch and continuous operation</td>
</tr>
<tr>
<td>42</td>
<td>A. Knoch,</td>
<td>Fluid-induced bending load of stirrers</td>
</tr>
<tr>
<td>43</td>
<td>M. Kimata, Y. Aoki, N. Nayan, W. Bujalski,</td>
<td>Mixing studies related to the cleaning of molten aluminium</td>
</tr>
<tr>
<td></td>
<td>A. W. Nienow, J. L. Song, M. R. Jolly,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performances of a novel mixing device: the TRIAXE® system - mixing times and power consumption for highly viscous fluids 589

Experimental investigation of the hydrodynamics in a continuous 16-stage stirred vessel 597

Interaction of flow macro-instabilities and free liquid surface in an agitated vessel 605

CFD analysis of power numbers and velocity in an industrial scale bioreactor - comparison with experimental results 613

Aeration in the vicinity of the liquid surface by an agitator: influence of the confinement 621

Near-impeller flow field in an unbaffled stirred tank 629

Industrial scale analysis of the three dimensional flow-field using advanced numerical and experimental methods 637

Time-Resolved PIV Measurements within a Triple Impeller Stirred-Tank 647

Index of Keywords 655

Index of Authors 661