Part 1
Table of Contents

xix AAMAS'02 Conference Officials
xx AAMAS'02 Committees
xxiv AAMAS'02 Reviewers
xxv AAMAS'02 Sponsors & Supporters

Part 1

Invited Talk
1 Evolution of the GPGP/TÆS Domain-Independent Coordination Framework
V. R. Lesser, University of Massachusetts/Amherst

Session 1A: Agent Oriented Software Engineering

Papers
3 ROADMAP: Extending the Gaia Methodology for Complex Open Systems
T. Juan, A. Pearce, L. Sterling, The Univ. of Melbourne

11 Multiagent Systems Specification by UML Statecharts Aiming at Intelligent Manufacturing
T. Arai, Mitsubishi Materials Corporation
F. Stolzenburg, Universität Koblenz-Landau

19 The Cognitive Agents Specification Language and Verification Environment for Multiagent Systems
S. Shapiro, University of Toronto
Y. Lespérance, York University
H. J. Levesque, University of Toronto

27 From AOSE Methodology to Agent Implementation
P. Massonet, CEDITI
Y. Deville, Université catholique de Louvain
C. Neve, CEDITI

Posters
35 The Tropos Software Development Methodology: Processes, Models and Diagrams
F. Giunchiglia, DIT University of Trento
J. Mylopoulos, University of Toronto
A. Perini, ITC-Irst

37 Prometheus: A Methodology for Developing Intelligent Agents
L. Padgham, M. Winikoff, RMIT University

39 Towards Industrially Applicable Modeling Technique for Agent-Based Systems
A. Sturm, Technion - Israel Institute of Technology
O. Shehory, IBM Research Lab, Haifa

41 Using the UML to Model Knowledge in Agent Systems
C. Heinzle, L. Sterling, University of Melbourne

43 KODAMA Project: From Design to Implementation of a Distributed Multi-Agent System
G. Zhong, K. Takahashi, S. Amamiya, T. Mine, M. Amamiya, Kyush University

45 Agent-Oriented Software Engineering for Successful TAC Participation
C. Fritschi, K. Dorer, living systems AG

47 HAMAC: An Agent-based Programming Method
G. Klein, A. El Fallah-Seghrouchni, Univ. of Paris XIII
P. Taillibert, THALES Airborne Systems

49 P2P Based Knowledge Source Discovery on Research Support System Papits
T. Ozono, S. Goto, N. Fujimaki, T. Shintani, Nagoya Institute of Technology

51 Specifying Agents with UML in Robotic Soccer
J. Murray, Universität Koblenz-Landau

Session 2A: Markets and Auctions I

Papers
53 Risk and Expectations in a-priori Time Allocation in Multi-Agent Contracting
A. Babanov, J. Collins, M. Gini, University of Minnesota

61 Designing an Auction Protocol under Asymmetric Information on Nature's Selection
T. Ito, Japan Advanced Institute of Science and Technology
M. Yokoo, S. Matsubara, NTT Corporation

69 Winner Determination in Combinatorial Auction Generalizations
T. Sandholm, Carnegie Mellon University
S. Suri, University of California
A. Gilpin, D. Levine, CombineNet, Inc.

77 Protocols and Strategies for Automated Multi-Attribute Auctions
E. David, R. Azoulay-Schwartz, S. Kraus, Bar-Ilan University

Posters
Subsection: Agent Architectures

86 Agent Behavior Architectures — A MAS Framework Comparison
S. P. Fonseca, UC Santa Cruz/ HP Labs
M. L. Griss, R. Letsinger, Hewlett-Packard Labs
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>A Multi-Level Approach and Infrastructure for Agent-Oriented Software Development</td>
<td>M. Purvis, M. Nowostawski, S. Cranefield</td>
<td>University of Otago</td>
</tr>
<tr>
<td>90</td>
<td>Architecting Agents Using Core Competencies</td>
<td>K. S. Barber, D. N. Lam</td>
<td>The University of Texas at Austin</td>
</tr>
<tr>
<td>92</td>
<td>Towards a Real-Time Architecture for Time-Aware Agents</td>
<td>K. Prouskas, J. Pitt</td>
<td>Imperial College of Science, Technology, and Medicine</td>
</tr>
<tr>
<td>94</td>
<td>Organizational Multi-Agent Architectures: A Mobile Robot Example</td>
<td>M. Kolp, University of Louvain</td>
<td>University of Louvain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Giorgini, University of Trento</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Mylopoulos, University of Toronto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Congregating and Market Formation</td>
<td>C. H. Brooks, E. H. Durfee</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>104</td>
<td>An Average-case Budget-Non-Negative Double Auction Protocol</td>
<td>Y. Sakurai, M. Yokoo</td>
<td>NTT Corporation</td>
</tr>
<tr>
<td>112</td>
<td>Secure Multi-agent Dynamic Programming Based on Homomorphic Encryption and its Application to Combinatorial Auctions</td>
<td>M. Yokoo, K. Suzuki</td>
<td>NTT Corporation</td>
</tr>
<tr>
<td>120</td>
<td>Algorithm for Combinatorial Coalition Formation and Payoff Division in an Electronic Marketplace</td>
<td>C. Li, K. Sycara</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>A Negotiation Model of Incomplete Information Under Time Constraints</td>
<td>C. Da-Jun, X. Liang-Xian</td>
<td>Shanghai JiaoTong University</td>
</tr>
<tr>
<td>143</td>
<td>Multi-Issue Negotiation Under Time Constraints</td>
<td>S. S. Fatima, M. Wooldridge</td>
<td>University of Liverpool</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. R. Jennings, University of Southampton</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>A Peer-to-Peer Agent Auction</td>
<td>E. Ogston, S. Vassiliadis</td>
<td>Delft University of Technology</td>
</tr>
<tr>
<td>162</td>
<td>Randomized Strategic Demand Reduction — Getting More by Asking for Less</td>
<td>P. S. A. Reitsma, Brown University</td>
<td>University of Texas, Austin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Stone, University of Texas, Austin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. A. Csirik, AT&T Labs Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. L. Littman, Stowe Research</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Caching in Multi-Unit Combinatorial Auctions</td>
<td>K. A. Ghebreamlak, A. Andersson</td>
<td>Uppsala University</td>
</tr>
<tr>
<td>166</td>
<td>A Strategy-Proof Multiunit Double Auction Mechanism</td>
<td>P. Huang, A. Scheller-Wolf, K. Sycara</td>
<td>Carnegie Mellon University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Sandholm, Carnegie Mellon University</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>A Multi-agent Queuing Model for Resource Allocations in a Non-Cooperative Game</td>
<td>P. Winoto, T. Y. Tang</td>
<td>The University of Saskatchewan</td>
</tr>
<tr>
<td>172</td>
<td>Coordination Mechanism for Dependency Relationships among Multiple Agents</td>
<td>W. Chen, K. S. Decker</td>
<td>University of Delaware</td>
</tr>
<tr>
<td>174</td>
<td>Modeling Multi-Agent Communication Contexts</td>
<td>A. Di Stefano, C. Santoro</td>
<td>Università di Catania</td>
</tr>
<tr>
<td>176</td>
<td>Multi Agent Simulation of Unorganized Traffic</td>
<td>P. Paruchuri, A. R. Pullalarevu, K. Karlapalem</td>
<td>International Institute of Information Technology</td>
</tr>
<tr>
<td>184</td>
<td>Agent-based Interaction Analysis of Consumer Behavior</td>
<td>L. B. Said, FTR&D/LIP6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Bouron, FTR&D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Drogoul, LIP6</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>ACUMEN: Amplifying Control and Understanding of Multiple ENtities</td>
<td>J. Allbeck, K. Kipper, C. Adams, W. Schuler, E. Zoubanova, N. Badler, M. Palmer, A. Joshi</td>
<td>Computer and Information Science</td>
</tr>
</tbody>
</table>

Session 3A: Markets and Auctions II

Session 1B: Bidding and Bargaining Agents I

Papers

Session 2B: Multiagent Simulation

Posters

Session 2B: Multiagent Simulation
Table of Contents

Part 1: pages 1-516

199 Simulation Level of Detail for Multiagent Control
D. C. Brogan, University of Virginia
J. K. Hodgins, Carnegie Mellon University

207 Two Multi-Agent Models of Gender Interaction in Artificial Society
J. V. Frolova, V. V. Korobitsin, Omsk State University

211 An Agent-Based Simulation for Water Sharing Between Different Users
M. Le Bars, LAMSAD Laboratory/INRA ESR
J. M. Attonaty, INRA ESR
S. Pinson, LAMSAD Lab., Université Dauphine-Paris

213 Assimilation and Survival in Cyberspace
R. Ghana-Hercock, BTexact Future Technologies Group

215 A Multiagent Interaction Paradigm for Physiological Process Control
F. Amigoni, N. Gatti, M. Somalvico, Politecnico di Milano

217 Simulation of Adaptive Agents: Learning Heuristics for Route Choice in a Commuter Scenario
F. Kliigl, University of Würzburg
A. L. C. Bazzan, Institute of Informatics, UFRGS

Session 3B: Robot Architectures

219 A Hybrid Mobile Robot Architecture with Integrated Planning and Control
K. H. Low, W. K. Leow, M. H. Ang, Jr., National University of Singapore

227 A Hierarchical Architecture for Behavior-Based Robots
M. N. Nicolescu, M. J. Matarić, University of Southern California

234 On the Development of Cooperative Behavior-Based Mobile Manipulators
B. S. Pimentel, G. A. S. Pereira, M. M. F. M. Campos, Federal University of Minas Gerais

240 PHA: Performing A* in Unknown Physical Environments
A. Felner, R. Stern, S. Kraus, Bar-Ilan University

Session 4B: Multiagent Resource Allocation

248 Effort Profiles in Multi-Agent Resource Allocation
H. V. D. Parunak, S. Brueckner, J. Sauter, Altarum
R. Savit, University of Michigan

Part 2: pages 517-1000

256 Collaborative Assignment: A Multiagent Negotiation Approach Using BDI Concepts
K. T. Seow, K. Y. How, DSO National Laboratories

264 An Industrial Application of Agents for Dynamic Planning and Scheduling
M.-J. Yoo, Université de Lausanne

Session 1C: Trust and Reputation

Papers

272 Supervised Interaction — Creating a Web of Trust for Contracting Agents in Electronic Environments
M. J. Kollingbaum, T. J. Norman, University of Aberdeen

280 Notions of Reputation in Multi-Agents Systems: A Review
L. Mui, MIT Laboratory for Computer Science
A. Halberstadt, Magiccookie
M. Mohtashemi, MIT Laboratory for Computer Science

294 An Evidential Model of Distributed Reputation Management
B. Yu, M. P. Singh, North Carolina State University

Posters

298 Effort Profiles in Multi-Agent Resource Allocation
H. V. D. Parunak, S. Brueckner, J. Sauter, Altarum
R. Savit, University of Michigan

Subsection: Evolution, adaptation, and learning

312 Emergence of Stable Coalitions via Task Exchanges
P. S. Dutta, S. Sen, University of Tulsa
Table of Contents

Part 1: pages 1-516

314 On-Line Incremental Learning in Bilateral Multi-issue Negotiation
V.-W. Soo, C.-A. Hung, National Tsing Hua University

316 A Domain-Independent Diagnosis Tool to Adapt Organizations in Learning Scenarios
A. L. C. Bazzan, V. Lindemann, Instituto de Informática, UFRGS
V. R. Lesser, University of Massachusetts

Session 2C: Life-Like and Believable Qualities

Papers

318 Interacting with Virtual Characters in Interactive Storytelling
M. Cavazza, F. Charles, S. J. Mead, University of Teesside

326 Using an Ethologically-Inspired Model to Learn Apparent Temporal Causality for Planning in Synthetic Creatures
R. Burke, B. Blumberg, MIT

334 A Step Toward Irrationality: Using Emotion to Change Belief
S. Marsella, J. Gratch, University of Southern California

342 Believability through Context: Using "knowledge in the world" to create intelligent characters
P. Doyle, Stanford University

Posters

350 SCREAM: Scripting Emotion-based Agent Minds
H. Prendinger, M. Ishizuka, University of Tokyo

352 An Architecture for Emotional Decision-Making Agents
E. Chown, Bowdoin College
R. M. Jones, Colby College & Soar Technology
A. E. Henninger, Soar Technology

354 Increasing the Coherence between Human Beings and Virtual Agents
P. Herrero, A. de Antonio, Universidad Politécnica
S. Benford, C. Greenhalgh, University of Nottingham

356 Virtual Humans Personified
S. Khalirsagar, N. Magmenat-Thalmann, University of Geneva

358 A Motivational System that Drives the Development of Activity
M. D. Schmill, P. R. Cohen, University of Massachusetts

360 Emotions and Personality in Agent Design
P. J. Gmytrasiewicz, University of Illinois at Chicago
C. L. Lisetti, School of EECS

Session 3C: Evolution, Adaptation and Learning I

362 Mutual Online Concept Learning for Multiple Agents
J. Wang, L. Gasser, University of Illinois at Urbana-Champaign

370 A Multiagent Reinforcement Learning Algorithm using Extended Optimal Response
N. Suematsu, A. Hayashi, Hiroshima City University

378 Learning Sequences of Actions in Collectives of Autonomous Agents
K. Tumer, NASA Ames Research Center
A. K. Agogino, The University of Texas
D. H. Wolpert, NASA Ames Research Center

386 A Bartering Approach to Improve Multiagent Learning
S. Ontañón, E. Plaza, IIIA, Artificial Intelligence Research Institute

Session 4C: Argumentation, Persuasion, and Papers

394 An Analysis of Formal Inter-agent Dialogues
S. Parsons, Massachusetts Institute of Technology
M. Wooldridge, University of Liverpool
L. Amgoud, IRIT

402 Desiderata for Agent Argumentation Protocols
P. McBurney, S. Parsons, M. Wooldridge, University of Liverpool

410 Argument Exchange in Heterogeneous Electronic Commerce Environments
L. Brito, J. Neves, Universidade do Minho

Session 1D: Self-Organizing Systems

Papers

418 Programmable Self-Assembly Using Biologically-Inspired Multiagent Control
R. Nagpal, Massachusetts Institute of Technology

426 How Social Spiders Inspired An Approach To Region Detection
C. Bourjot, V. Chevrier, V. Thomas, LORIA, UMR 7503

434 Evolving Adaptive Pheromone Path Planning Mechanisms
J. A. Sauter, R. Matthews, H. Van Dyke Parunak, S. Brueckner, Altarum

441 Combining Amorphous Computing and Reactive Agent-Based Systems: A Paradigm for Persuasive Intelligence?
D. Servat, A. Drogoul, Université de Paris
<table>
<thead>
<tr>
<th>Session 2D: Group and Organizational Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papers</td>
</tr>
<tr>
<td>467 Extracting Reputation in Multi Agent Systems by Means of Social Network Topology</td>
</tr>
<tr>
<td>H. M. Pujol, R. Sanglesa, J. Delgado,</td>
</tr>
<tr>
<td>University of Catalonia</td>
</tr>
<tr>
<td>475 Reputation and Social Network Analysis in Multi-Agent Systems</td>
</tr>
<tr>
<td>J. Sabater, C. Sierra, IIIA - Artificial Intelligence Research Institute</td>
</tr>
<tr>
<td>483 Multi-Agent Dependence by Dependence Graphs</td>
</tr>
<tr>
<td>J. S. Sichman, LTI/EP/USP</td>
</tr>
<tr>
<td>R. Conte, IP/CNR</td>
</tr>
<tr>
<td>491 Group Delegation and Responsibility</td>
</tr>
<tr>
<td>T. J. Norman, University of Aberdeen</td>
</tr>
<tr>
<td>C. Reed, University of Dundee</td>
</tr>
<tr>
<td>Posters</td>
</tr>
<tr>
<td>467 A Robust Cooperation Architecture for Teams of UCAVs</td>
</tr>
<tr>
<td>F. Legras, Onera DCSD/SupAéro</td>
</tr>
<tr>
<td>501 MOISE+: Towards a structural, functional, and deontic model for MAS organization</td>
</tr>
<tr>
<td>J. F. Hilbner, J. S. Sichman, LTI/EP/USP</td>
</tr>
<tr>
<td>O. Boissier, SMA/SIMMO/ENSM.SE</td>
</tr>
<tr>
<td>503 Integrative Negotiation In Complex Organizational Agent Systems</td>
</tr>
<tr>
<td>X. Zhang, V. Lesser, University of Massachusetts at Amherst</td>
</tr>
<tr>
<td>T. Wagner, Honeywell Laboratories</td>
</tr>
<tr>
<td>505 A Multi-Agent Architecture to Support Synchronous Collaborative Learning in an International Environment</td>
</tr>
<tr>
<td>M. D. Beer, Sheffield Hallam University</td>
</tr>
<tr>
<td>J. Whatley, University of Salford</td>
</tr>
<tr>
<td>507 The Integrated Modeling of Multi-Agent Systems and their Environment</td>
</tr>
<tr>
<td>S. Mellouli, G. W. Mineau, D. Pascoet, Laval University</td>
</tr>
<tr>
<td>509 Author Index Part 1</td>
</tr>
</tbody>
</table>