Wave propagation
Moving load – Vibration Reduction

Edited by

Nawawi Chouw
Okayama University, Japan

Günther Schmid
Ruhr University Bochum, Germany
Table of Contents

Foreword IX
Organization XV

Ground vibrations and blast induced vibrations

The dynamic response of structures induced by blasting
Ö. Aydan, A. Bilgin & G.U. Aldas 3

Characteristics of dynamic response and damage of RC structures to blast ground motion
H. Hao 11

Ground vibrations caused by soil compaction
K.R. Massarsch 25

Analyses on accumulation of propagating ground surface wave under running train

Soil-structure interaction due to moving loads
S.A. Savidis & C. Bode 47

Numerical simulation of blast wave propagation in soil mass
Z. Wang, H. Hao & Y. Lu 61

Moving load

Investigation of ground vibrations in the vicinity of a train track embankment
M.A. Adam & G. Schmid 71

Peculiarities of vibrations of a layered inhomogeneous medium under the action of a load moving on its surface
T.I. Belyankova, V.V. Kalinchuk, W. Hubert & G. Schmid 79

Investigation on soil-bridge-pile vibrations induced by passing trains
J.-D. Yau, H.-H. Hung & Y.-B. Yang 85
Vibration reduction

Reduction of response and first excursion probability for random excitation using nonlinear characteristics
S. Aoki

Impediment of wave propagation from a moving source via the subsoil into the building
N. Chouw & G. Pflanz

Efficient numerical approach for the analysis of vibrations due to moving load
S. Hirose

Enhanced response through supplementary friction damper devices

Nonstationary robust vibration control for moving wire
M. Otsuki & K. Yoshida

Reduction measures in track for Shinkansen-induced ground vibrations
O. Yoshioka

Track-soil analysis

Three-dimensional analysis of subway track vibrations due to running wheels
K. Abe, D. Satou, T. Suzuki & M. Furuta

A three-dimensional FEM/BEM model for the investigation of railway tracks

Instability of vibrations of a moving vehicle on an elastic structure
A.V. Metrikine

Numerical and experimental investigation

Hybrid experimental-numerical simulation of vibrating structures
U.E. Dorka

Centrifuge simulations of wave propagation using a moving load system

Dynamic response of a plate element of a steel girder caused by high-speed train
M. Okamura

Experimental validation of a numerical prediction model for traffic induced vibrations by in situ experiments
L. Pyl, G. Degrande, G. Lombaert & W. Haegeman
Properties of train-induced vibration at railway tunnel lining
K. Tsuno, S. Konishi & M. Furuta

Noise pollution

Numerical study on the effect of the near pressure field around a train on the railside environment
T. Doi & T. Ogawa

Prediction model of wayside noise level of Shinkansen
K. Nagakura & Y. Zenda

Suppression of an acoustic shock wave and damping of pressure waves in a tunnel by a double array of Helmholtz resonators
N. Sugimoto

Road traffic noise prediction model “ASJ Model 1998” proposed by the Acoustical Society of Japan
K. Yamamoto & H. Tachibana

Final discussion

Miscellaneous

Addresses of scientific committee members

Addresses of invited speakers

Addresses of speakers selected from “Call for Papers”

Author index