Constitutive Models for Rubber II

Edited by

Dieter Besdo
Institut für Mechanik, Universität Hannover, Germany

Robert H. Schuster
Deutsches Institut für Kautschuktechnologie e. V., Hannover, Germany

Jörn Ihlemann
Institut für Mechanik, Universität Hannover, Germany
Table of contents

Foreword

Foreword to the proceedings of the First European Conference on Constitutive Models for Rubber/Vienna/Austria 1999

IX

Statistically based models

Statistical-mechanical basis of constitutive models for heterogeneous rubber materials
 Gert Heinrich

Modeling of soft matter viscoelasticity for FE-applications
 Manfred Klüppel & Jens Meier

A model to describe filler effects in rubber
 Manfred Achenbach

Softening behaviour of elastomeric media after loading in changing directions
 Hartmut Pawelski

Phenomenological models

Thermodynamics modelling of internal friction and hysteresis of elastomers
 Rodrigue Desmorat & Sabine Cantournet

Description of the deformation behaviour of filled elastomers taking into account energy elastic contributions
 D. Göritz & J. Böhm

Rheology & viscoelasticity

A generalisation of the Mooney-Rivlin model to finite linear viscoelasticity
 Peter Haupt & Alexander Lion

Finite viscoelasticity: A physical approach based on relaxation spectra, fractional derivatives and process-dependent viscosities
 Alexander Lion & Peter Haupt

3

11

21

27

37

45

57

65
A constitutive model of elastomers in the case of cyclic load with amplitude-dependent internal damping

Michael Rabkin & Thorsten Brüger

FE implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives

Andre Schmidt & Lothar Gaul

Physically motivated models

A tube concept in finite viscoelasticity of rubbers

Aleksey D. Drozdov

A micromechanical model for stress-softening of rubbery polymers

Aleksey D. Drozdov & Al Dorfmann

A physically-based constitutive model for the finite viscoelastic deformations in rubbery polymers based on a directly evaluated micro-macro-transition

Christian Miehe & Frank Lulei

Softening effects

A simple three-dimensional model for the Mullins effect in rubber

M.H.B.M. Shariff & B. Majeed

The effect of softening phenomena in filled rubber during inhomogeneous loading

D. Besdo & J. Ihlemann

Mullins' effect on rubber materials: Damage model driving parameters

L. Laiarinandrasana, K. Layouni & R. Piques

Experimental investigations

Investigations on the detachment process of a rubber matrix from a rigid inclusion

Achim Moser & Nuri Aksel

Measurement and modelling of friction of rubber

J. Gough, A.H. Muhr & M. Kwong

The creep and recovery of filled and unfilled elastomers

Alan G. Thomas, James J.C. Busfield & Ken Yamaguchi

Evaluation of constitutive models using surface NMR

E. Haberstroh, A. Grambow & R. Capellmann

Aging, damage, fatigue

Fracture mechanics based failure criteria of rubber and their use for FEM based component design

Jörg Struve

Stress softening in rubber-like solids subjected to cavitation damage

A. Dorfmann & R.W. Ogden

Oxidative aging of filled elastomers

L. Nasdala

Criteria for fatigue crack nucleation in rubber under multiaxial loading

W.V. Mars & A. Fatemi
Specific effects

Simulation of effective rubber properties during cross-linking using a simple network model
Markus André, Peter Wriggers & Claudia Bertram

Numerical methods

A method to analyse the non-linear dynamic behaviour of carbon-black-filled rubber components using standard FE-codes
Per-Erik Austrell, Anders K. Olsson & Martin Jönsson

On the numerical modelling of the thermo-mechanical material behaviour of rubber-like polymers
S. Reese

Parameter identification

Parameter identification with a direct search method using finite elements
Stefan Hartmann, Peter Haupt & Tobias Tschöpe

Determination of rubber material properties for finite element analysis from actual products
R.K. Luo, P.G. Gahagan, W.X. Wu & W.J. Mortel

A fitting procedure for viscoelastic-elastoplastic material models
Anders K. Olsson & Per-Erik Austrell

Identification of the mechanical parameters linked to a visco-hyperelastic model:
Application to a class of elastomers
Adnane Boukamel & Stephane Meo

Optimization of components

Optimization of elastomer-metal components with TOSCA and ABAQUS
Ralf Meske, Jürgen Sauter & Matthias Friedrich

Industrial applications

Modelling the audible stiffness of preloaded vibration isolators
Leif Kari

Simulation of road excited tyre vibrations
Volker Dorsch, Ted C. Warholic & Axel Becker

Modelling of softening effects in elastomeric material and its application in tire computations
M. Kaliske & A. Domscheit

Author index