International Conference on TRIP-Aided High Strength Ferrous Alloys

Editor: Prof. Bruno C. De Cooman

GRIPS' Sparkling World of Steel Vol. 1: Proceedings
Table of contents

De Cooman, Bruno C.: 11
Preface

Bleck, Wolfgang:
Using the TRIP effect - the dawn of a promising group of cold formable steels

Fundamental Materials Science of the TRIP Phenomenon

Kruijver, Suzelotte; Zhao, Lie; Sietsma, Jilt; Offerman, Erik; van Dijk, Niels; Margulies, Lawrence; Lauridsen, Erik; Grigull, Stephan; Poulsen, Henning; van der Zwaag, Sybrand:
In situ observations on the austenite stability in TRIP-steel during tensile testing

Jung, Thierry; Drillet, Josée; Couturier, Audrey; Olier, Christopher:
Detailed study of the transformation mechanisms in ferrous TRIP aided steels

Furnemont, Quentin; Jacques, Pascal J.; Pardo, Thomas; Lani, Frédéric; Godet, Stéphane; Harlet, Philippe; Conlon, Kelly and Delannay, Francis.
The macro- and micromechanics of TRIP-assisted multiphase steels, experiments and modelling

Sugimoto, Koh-ichi; Kikuchi, Ryo; Hashimoto, Shun-ichi:
Development of high strength low alloy TRIP-aided steels with annealed martensite matrix

Allain, Sébastien; Chateau, Jean-Philippe; Bouaziz, Olivier:
Constitutive model of the TWIP effect in a polycrystalline high manganese content austenitic steel

Vercammen, Steven; De Cooman, Bruno C.; Akdut, Nuri; Blanpain, Bart; Wollants, Patrick:
Microstructural evolution and crystallographic texture formation of cold rolled austenitic Fe-30Mn-3Al-3Si TWIP-steel

Wirth, Edwin; Pichler, Andreas; Angerer, Reinhold; Stiasny, Peter; Hauzenberger, Karl; Titovets, Yuri F.; Hackl, Michael:
Determination of the volume amount of retained austenite and ferrite in small specimens by magnetic measurements

Barbé, Liesbeth; De Meyer, Marijke; De Cooman, Bruno C.:
Determination of the M_S temperature of dispersed phase TRIP-aided steels
Zhao, Lie; Tegus, Olijed; Brück, Ekkes; van Dijk, Niels H.; Kruijver, Suzelotte; Sietsma, Jilt; van der Zwaag, Sybrand:
Magnetic determination of the thermal stability of retained austenite in TRIP steel

Allain, Sébastien; Chateau, Jean-Philippe; Bouaziz, Olivier; Legros, Marc; Garat, Xavier:
Characterization of the mechanical twinning microstructure in a high manganese content austenitic steel
Steel. TWIP. Microtwins. Mean free path. Twinning kinetic. Acoustic emission.

Pychmintsev, Igor Y.; Savraí, Roman A.; De Cooman, Bruno C.:
Effect of stress state on the transformation behaviour and mechanical properties of TRIP-aided automotive steels

Ros-Yañez, Tanya; Houbart, Yvan; Petrov, Roumen; Mertens, Anne:
Characterisation of TRIP-assisted steel by atomic force microscopy and OIM

Brüx, Udo; Frommeyer, Georg; Grässel, Oliver; Meyer, Lothar Werner; Weise, Andrea:
Development and characterization of high strength impact resistant Fe-Mn-(Al, Si) TRIP/TWIP steels

Scott, Colin; Drillet, Josée:
Quantitative analysis of local carbon concentrations in TRIP steels
Carbon concentration. Residual austenite. TEM. CBED. PEELS. Methodology.

TRIP-Aided Ferrous Alloys

Takahashi, Manabu; Yoshida, Hiroshi; Hiwatashi, Shinji:
Properties of TRIP type high strength steels

Matsuda, Hiroshi; Kitano, Fusato; Hasegawa, Kohai; Urabe, Yoshiaki; Hosoya, Yoshihiro:
Metallurgy of continuously annealed high strength TRIP steel sheet

Traint, Sandra; Pichler Andreas; Hauzenberger, Karl; Stiaszny Peter; Werner, Ewald:
Influence of silicon, aluminium, phosphorus and copper on the phase transformations of low alloyed TRIP steels

Jacques, Pascal J.; Harlet, Philippe; Delannay, Francis:
Critical assessment of the phase transformations occurring during the heat-treatment of TRIP-assisted multiphase steels
Godet, Stéphane; Harlet, Philippe; Delannay, Francis and Jacques, Pascal J.:
Effect of hot-rolling conditions on the tensile properties of multiphase steels exhibiting a TRIP effect

Zhao, Lie; Moreno, Juan; Krujiver, Suzelotte; Sietsma, Jilt; van der Zwaag, Sybrand:
Influence of intercritical annealing temperature on phase transformations in a high aluminium TRIP steel

Barbé, Liesbeth; Tosal-Martínez, Lucía; De Cooman, Bruno C.:
Effect of phosphorus on the properties of a cold rolled and intercritically annealed TRIP-aided steels

Mahieu, Jan; Van Dooren, Danny; Barbé, Liesbeth; De Cooman, Bruno C.:
Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification

Kim, Sung-Joon; Lee, Chang Gil; Jeong, Woo-Chang; Park, Ikmin:
Microstructures and mechanical properties of the 0.15% C TRIP-aided cold-rolled steels containing Cu, Ni and Cr

Pichler, Andreas; Traint, Sandra; Blaimschein, Martin; Sperl, Johann; Stiaszny, Peter; Werner, Ewald A.:
Correlation between thermal treatment, retained austenite stability and mechanical properties of low-alloyed TRIP steels

Timokhina, Ilana B.; Hodgson, Peter D.; Pereloma, Elena V.:
Effect of strain and morphology of the bainitic microstructure on the retained austenite stability and mechanical properties of thermomechanically processed C-Mn-Si(-Nb) TRIP steels

Huang, Jin; Hammond, Robert P.; Conlon, Kelly; Poole, Warren J.:
An experimental study of the ferrite-austenite two phase region in a Fe-C-Mn-Si steel using neutron diffraction

Van Hecke, Patrick; Penning, Jan:
TRIP-effects in austempered ductile irons
Table of contents

Ohlert, Joachim; Bleck, Wolfgang; Hulka, Klaus:
Control of microstructure in TRIP steels by niobium

Shi, Wen; Li, Lin; Zhou, Yuan; Fu, Ren Yu; Wei, Xi Cheng; De Cooman, Bruno C.; Wollants, Patrick; Zhu, Xiao Dong; Wang, Li:
Effect of Mn content on the microstructures and mechanical properties of cold rolled 0.15C-0.6Si-Mn TRIP steels
TRIP steel. Microstructures. Mechanical properties.

Zhou, Yuan; Shi, Wen; Wei, Xi Cheng; Li, Lin; De Cooman, Bruno C.; Wollants, Patrick; Zhu, Xiao Dong; Wang, Li:
Computer simulations of transformation during intercritical annealing in silicon-manganese TRIP steel

Kestens, Leo; Petrov, Roumen; Houbaert, Yvan:
Orientation selective transformation during intercritical annealing of cold rolled TRIP steel

Petrov, Roumen; Kestens, Leo; Kaluba, Wlodzimierz; Houbaert, Yvan:
Recrystallization and austenite formation in a cold rolled TRIP steel during ultra fast heating

Covarrubias, Octavio; Guerrero, Martha Patricia; Colás, Rafael; Petrov, Roumen; Kestens, Leo; Houbaert, Yvan:
Transformation behaviour of Si and Mn bearing low carbon steels

Lucas, Aurélie; Herman, Jean-Claude; Schmitz, Alain:
Cu-containing TRIP steels

Physical Properties

Antretter, Thomas; Fischer, Franz Dieter; Tanaka Kikuaki; Cailletaud, Georges:
Theory, experiments and numerical modelling of phase transformations with emphasis on TRIP

Moriau, Olivier; Tosal-Martinez, Lucía; Verleysen, Patricia; Degrieck, Joris:
Dynamic mechanical properties of cold rolled TRIP steels for crash-relevant applications

Wei, Xi Cheng; Li, Lin; Fu, Ren Yu; De Cooman, Bruno C.; Wollants, Patrick; Zhu, Xiao Dong; Wang, Li:
Time dependence of transformation process of Si-Mn TRIP steel during high-speed tensile impact testing
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Rompaey, Tim; Furnémont, Quentin; Jacques, Pascal J.; Pardoen, Thomas; Blanpain, Bart; Wollants, Patrick:</td>
<td>259</td>
</tr>
<tr>
<td>Micromechanical modelling of TRIP-steels</td>
<td></td>
</tr>
<tr>
<td>Yakubovsky, Oleg; Fonstein, Nina; Bhattacharya, Debanshu:</td>
<td>263</td>
</tr>
<tr>
<td>Stress-strain behaviour and bake hardenability of TRIP and TRIP-aided multiphase steels</td>
<td></td>
</tr>
<tr>
<td>Fazeli, Fateh; Militzer, Matthias:</td>
<td>271</td>
</tr>
<tr>
<td>Towards an austenite decomposition model for TRIP steels</td>
<td></td>
</tr>
<tr>
<td>Vasilakos, Apostolos N.; Ohlert, Joachim; Giasla, Katerina; Haidemenopoulos, Gregory N.; Bleck, Wolfgang:</td>
<td>277</td>
</tr>
<tr>
<td>Low-alloy TRIP steels: a correlation between mechanical properties and the retained austenite stability</td>
<td></td>
</tr>
<tr>
<td>Low alloy TRIP steels. Retained austenite stability. TRIP effect.</td>
<td></td>
</tr>
<tr>
<td>Jacques, Pascal J.; Petein, Arnaud; Harlet, Philippe:</td>
<td>281</td>
</tr>
<tr>
<td>Improvement of mechanical properties through concurrent deformation and transformation: new steels for the 21st century</td>
<td></td>
</tr>
<tr>
<td>Fu, Ren Yu; Wei, Xi Cheng; Shi, Wen; Li, Lin; De Cooman, Bruno C.; Wollants, Patrick; Zhu, Xiao Dong; Wang, Li:</td>
<td>287</td>
</tr>
<tr>
<td>Dynamic tensile characteristic of high strength low alloy TRIP steel and its modelling</td>
<td></td>
</tr>
<tr>
<td>Mertens, Anne; Jacques, Pascal; Harlet, Philippe; Delannay, Francis:</td>
<td>293</td>
</tr>
<tr>
<td>On the optimisation of the mechanical properties of two aluminium-alloyed multiphase TRIP-assisted steels</td>
<td></td>
</tr>
<tr>
<td>Pychmintsev, Igor Y.; Savrai, Roman A.; De Cooman, Bruno C.; Moriau, Olivier:</td>
<td>299</td>
</tr>
<tr>
<td>High strain rate behaviour of TRIP-aided automotive steels</td>
<td></td>
</tr>
<tr>
<td>CMnSi, CMnAISi, Plasticity, Specific energy, Transformation behaviour, Microstructure change, Adiabatic heating.</td>
<td></td>
</tr>
<tr>
<td>Baik, Seung Chul; Park, Sung Ho; Kwon, Ohjoon; Kim, Dong-Ik, Oh, Kyu Hwan:</td>
<td>303</td>
</tr>
<tr>
<td>Effects of nitrogen on the mechanical properties of cold rolled TRIP steel sheets</td>
<td></td>
</tr>
<tr>
<td>Tosal-Martinez, Lucia; Jacobs, Sigrid; Claessens, Serge; Vandeputte, Sven:</td>
<td>311</td>
</tr>
<tr>
<td>Influence of microstructure, strain hardening behaviour and stress state on the formability of cold rolled TRIP steels</td>
<td></td>
</tr>
<tr>
<td>Zou, Hong Hui; Li, Lin; Fu, Ren Yu; De Cooman, Bruno C.; Wollants; Patrick; Zhu, Xiao Dong, Wang, Li:</td>
<td>317</td>
</tr>
<tr>
<td>Effect of retained austenite stability of Si-Mn TRIP steel on the product of strength and ductility</td>
<td></td>
</tr>
</tbody>
</table>

Int. Conf. on TRIP-Aided High Strength Ferrous Alloys
Automotive Applications

Godereaux, Stéphane; Vivet, Sabine; Beaudoin, Jean-François:
Application of TRIP steels in the automotive industry

Greisert, Carsten; Wesemann, Jürgen:
Influence of constant and variable restraining force on springback of TRIP700 and stainless steel grades

Foct, Jacques; Stolarz, Jacques; Baffie, Natacha; Massol, Karen; Vogt, Jean-Bernard:
Fatigue induced phase transformation in ferrous alloys

Papaefthymiou, Spyros; Bleck, Wolfgang; Kruijver, Suzelotte; Zhao, Lie; Sietsma, Jilt; van der Zwaag, Sybrand:
Microstructure development and mechanical behaviour of Al-containing TRIP-steels

Doege, Eckart; Kulp, Steffen; Sunderkötter, Christina:
Properties and application of TRIP-steel in sheet metal forming

Cretteur, Laurent; Koruk, Ali-Ihsan; Tosal-Martínez, Lucía:
Improvement of weldability of TRIP steels by use of in-situ pre- and post-heat treatments

Streicher, Amy M.; Speer, John G.; Matlock, David K.:
Forming response of retained austenite in a C-Si-Mn high strength TRIP sheet steel

Xu Luoping; Li Lin; Wei Xi Cheng; Fu Ren Yu; Cooman B.C.De; Wollants Patrick; Wang Li; Zhu Xiao Dong:
Effect of surface treatment on dynamic mechanical properties of high strength low alloy Si-Mn TRIP steel

Wei Xi Cheng, Li Lin, Fu Ren Yu, Cooman B. C. De, Wollants Patrick, Wang Li, Zhu Xiao Dong:
Influence of strain rate on strain-induced transformation of retained austenite to martensite in high strength low alloy TRIP steels
Strain rate. TRIP steel. Retained austenite. SEM. Dynamic behavior.

Mintz, Barrie:
The influence of aluminium on the strength and impact properties of steel

Index of authors