Volume 2

Session 14, DC-DC High Power and Boost Converters
Session Chairs: Bharat Modh, Tyco Electronics Power Systems; and Freddy R. Canizales, Alcatel Converters
Wednesday, March 13, 2:00 PM - 5:30 PM
San Antonio Ballroom B

14.1 Dynamic Analysis of Loss Limited Switching Full Bridge DC-DC Converter with Multimodal Control
A.R. Bendre, G. Venkataramanan, University of Wisconsin-Madison, Madison, WI; D.M. Divan, Soft Switching Technologies, Middleton, WI
617

14.2 An Optimal Lossless Commutation Quadratic PWM Boost Converter
L.H.S.C. Barreto, E.A.A. Coelho, V.J. Farias, L.C. de Freitas, J.B. Vieira, Jr., Universidade Federal De Uberlandia, Uberlandia, MG, BRAZIL
624

14.3 A Switched Mode Converter Suitable for Superconductive Magnetic Energy Storage (SMES) Systems
D. Shmilovitz, S. Singer, Tel-Aviv University, Tel-Aviv, ISRAEL
630

14.4 A Novel ZVS DC/DC Converter for High Power Applications
J.M. Zhang, F. Zhang, X.G. Xie, D.Z. Jiao, Z. Qian, Zhejiang University, Hangzhou, CHINA
635

14.5 A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Three-Level DC-DC Converter with Phase-Shift Control
S.J. Jeon, F. Canales, P.M. Barbosa, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA
641

14.6 Series-Parallel Connection of Modular DC-DC Converter Modules with Active Sharing of Input Voltage and Load Current
A. Bhinge, N. Mohan, University of Minnesota, Minneapolis, MN; R. Giri, R. Ayyanar, Arizona State University, Tempe, AZ
648

14.7 New Two-Inductor Boost Converter with Auxiliary Transformer
Y. Jang, M.M. Jovanović, Delta Products Corporation, Research Triangle Park, NC
654

Session 15, Voltage Regulator Modules II
Session Chairs: Ed Stanford, Intel Corporation; and Toshiyuki Zaitsu, TDK Corporation
Wednesday, March 13, 2:00 PM - 5:30 PM
Houston Ballroom B

15.1 Multiphase Voltage-Mode Hysteretic Controlled VRM with DSP Control and Novel Current Sharing
J.A. Abu-Qahouq, N. Pongratananukul, I. Batarseh, T. Kasparis, University of Central Florida, Orlando, FL
663

15.2 A Multiphase DC/DC Converter with Hysteretic Voltage Control and Current Sharing
W. Gu, Reliability Inc., Houston, TX; W. Qiu, University of Central Florida, Orlando, FL; W. Wu, APECOR Co., Orlando, FL; I. Batarseh, University of Central Florida, Orlando, FL
670

15.3 Switching Action Delays in Voltage Regulator Modules
P.L. Wong, Linear Technology Corporation, Milpitas, CA; F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA
675

15.4 A High Efficiency Topology for 12V VRM — Push-Pull Buck and Its Integrated Magnetics Implementations
J. Wei, P. Xu, F.C. Lee, Virginia Polytechnic Institute & State University, Blacksburg, VA
679

15.5 Investigation of Candidate Topologies for 12V VRM
P. Xu, J. Wei, K. Yao, Y. Meng, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA
686

15.6 Tapped-Inductor Buck Converters with a Lossless Clamp Circuit
K. Yao, F.C. Lee, Y. Meng, J. Wei, Virginia Polytechnic Institute & State University, Blacksburg, VA
693

15.7 Investigation of Topology Candidates for 48V VRM
M. Ye, P. Xu, B. Yang, F.C. Lee, Virginia Polytechnic Institute & State University, Blacksburg, VA
699
Session 16A, Rectifier Circuits
Session Chair: Tim A. Haskew, The University of Alabama
Wednesday, March 13, 2:00 PM - 3:45 PM
Houston Ballroom C

16A.1 A High Power-Quality, Three-Phase Utility Interface ... 709
B. Tamyurek, D.A. Torrey, Rensselaer Polytechnic Institute, Troy, NY

16A.2 A Novel Control Concept for Operating a Two-Stage -Rectifier-Based Telecommunications Power Supply Module under Heavily Unbalanced Mains Voltage Conditions ... 716
R. Greul, J. Kolar, J. Miniböck, Swiss Federal Institute of Technology Zurich, Zurich, SWITZERLAND

16A.3 Control of a Flyback Converter in Power Factor Correction Mode: Compromise Between the Current Constraints and the Transformer Volume ... 722
C. Larouci, J.P. Ferrieux, L. Gerbaud, J. Roudet, J. Barbaroux, Laboratoire d'Electrotechnique de Grenoble, Grenoble, FRANCE

16A.4 Design of 80W Two-Stage Adapter with High Efficiency and Low No Load Input Power 728
S. Zhou, B. Liu, China Institute of Metrology, Hangzhou, CHINA

Session 16B, Power Electronics Chili
Session Chair: Gautam (Tom) Nath, Intel Corporation
Wednesday, March 13, 4:15 PM - 5:30 PM
Houston Ballroom C

16B.1 Ultra High Efficiency of 95% for DC/DC Converter - Considering Theoretical Limitation of Efficiency .. 735
M. Takagi, K. Shimizu, T. Zaitsu, TDK Corporation, Chiba, JAPAN

16B.2 Improving the Dynamic Response of Active Power Filters Based on the Synchronous Reference Frame Method .. 742

16B.3 Survey of Modern Approaches of Education in Power Electronics .. 749
U. Drofenik, J.W. Kolar, Swiss Federal Institute of Technology Zurich, Zurich, SWITZERLAND

Session 17A, Induction Motor Drives and Control
Session Chair: Fabio Crescimbini, University ROMA TRE
Thursday, March 14, 8:30 AM - 10:15 AM
San Antonio Ballroom A

17A.1 A Low Cost, Simple Torque Ripple Reduction Technique for Three Phase Inductor Motors ... 759
J.J. Spangler, ON Semiconductor, Schaumburg, IL

17A.2 Induction Machines Performance Evaluator 'Torque Speed Estimation and Rotor Fault Diagnostic' ... 764
M. Haji, S. Ahmed, H.A. Toliyat, Texas A&M University, College Station, TX

17A.3 Adjustable-Speed Single-Phase Induction Motor Drive .. 770

17A.4 A Novel Three-Phase AC-DC-AC Sparse Matrix Converter .. 777
J.W. Kolar, ETH Zurich, Zurich, SWITZERLAND; M. Baumann, Vienna University of Technology, Vienna, AUSTRIA; F. Schafmeister, ETH Zurich, Zurich, SWITZERLAND; H. Ertl, Vienna University of Technology, Vienna, AUSTRIA
Session 17B, Unique Drive Topologies
Session Chair: Eric Persson, International Rectifier
Thursday, March 14, 10:45 AM - 12:00 PM
San Antonio Ballroom A

17B.1 A Novel Autotransformer based 18-Pulse Rectifier Circuit ... 795
G.R. Kamath, Hypertherm, Inc. Hanover, NH; D. Benson, R. Wood, Baldor Electric, Fort Smith, AK

17B.2 An Advanced Low-Cost Sensorless Induction Motor Drive ... 802
J. Guzinski, Technical University of Gdansk, Gdansk, POLAND; H. Abu-Rub, H.A. Toliyat,
Texas A&M University, College Station, TX

17B.3 Indirect Field Orientation for Induction Motors without Speed Sensor ... 809
C.C. de Azevedo, C.B. Jacobina, UFPB/CCT/DEE/LEIAM, Campina Grande, PB, BRAZIL; L.A.S. Ribeiro,
CEFET-MA, Sao Luis, MA, BRAZIL; A.M.N. Lima, UFPB/CCT/DEE/LEIAM, Campina Grande, PB, BRAZIL;
A.C. Oliveira, UFPB/CCT/DEE/LEIAM, Campina Grande, PB, BRAZIL and CEFET-MA, Sao Luis, MA, BRAZIL

Session 18, DC-DC Magnetics and Topologies
Session Chairs: Khai D.T. Ngo, University of Florida; and Roberto Prieto, Universidad Politecnica de Madrid
Thursday, March 14, 8:30 AM - 12:00 PM
Houston Ballroom A

18.1 Coupled Inductor Design Optimization for Fast-Response Low-Voltage DC-DC Converters 817
J. Li, C.R. Sullivan, A. Schultz, Dartmouth College, Hanover, NH

18.2 Integrated Magnetic Full Wave Converter with Flexible Output Inductor 824
L. Yan, D. Qu, B. Lehman, Northeastern University, Boston, MA

18.3 An Improved Current-Doubler Rectifier with Integrated Magnetics ... 831
J. Sun, K.F. Webb, Rockwell Collins, Inc., Cedar Rapids, IA; V. Mehrotra, Rockwell Scientific
Company, Cedar Rapids, IA

18.4 Bi-Directional Resetting Scheme of the Magamp Post-Regulator ... 838
W. Chen, J. Jian, C.C. Wen, Delta Power Electronics Center, Pudong, Shanghai, CHINA

18.5 Single Magnetic Push-Pull Forward Converter Featuring Built-in Input Filter and
Coupled-Inductor Current Doubler for 48V VRM ... 843
P. Xu, M. Ye, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA

18.6 A Family of Compound Active-Clamping DC-DC Converters ... 850
G. Chen, D. Xu, B. Feng, Y. Wang, Zhejiang University, Yuquan, Hangzhou, CHINA

18.7 The Forward Converter: From the Classic to the Contemporary .. 857
F. Dong Tan, TRW, Redondo Beach, CA

Session 19, DC-DC Low Power and Low Output Voltage Converters
Session Chairs: David Strasser, Texas Instruments; and Tamotsu Ninomiya, Kyushu University
Thursday, March 14, 8:30 AM - 12:00 PM
Houston Ballroom B

19.1 High Efficiency Flyback Converter using Synchronous Rectification ... 867
I.D. Jitaru, Ascom Rompower Inc., Tucson, AZ

19.2 20V MOSFETs for DC-DC Converters in Desktop Computers and Servers 872
D. Mari, R. Monteiro, International Rectifier, El Segundo, CA

19.3 Practical Solutions to the Design of Current-driven Synchronous Rectifier with Energy
Recovery from Current Sensing .. 878
J.C.P. Liu, X. Xie, E.N.K. Poon, B.M.H. Pong, The University of Hong Kong, Hong Kong, CHINA
19.4 A Single-Stage Converter Topology to Achieve Efficient On-Board Power Distribution for Multi-Points Loads

Y. Xi, Concordia University, Montreal, Quebec, CANADA; P.K. Jain, Queen’s University, Kingston, Ontario, CANADA

19.5 A Novel DC/DC ZVS Converter for Battery Input Application

J. Zeng, J. Ying, Q. Zhang, Delta Power Electronics Center (DPEC), Pudong, Shanghai, CHINA

19.6 Analysis and Design of Self-Oscillating Flyback Converter

B.T. Irving, M.M. Jovanovi, Delta Products Corporation, Research Triangle Park, NC

19.7 An Alternative Approach to Efficiently and Flexibly Generating Reset Waveforms for AC PDP

T.F. Wu, C.C. Chen, C.C. Chen, W.F. Hsu, National Chung Cheng University, Chia-Yi, Taiwan

Session 20, Lamp Ballasts and Lighting

Session Chairs: J.C. Johnson, Cooper Lighting; and Jaime Arau, CENIDET

Thursday, March 14, 8:30 AM - 12:00 PM
San Antonio Ballroom B

20.1 HF Multiresonant Electronic Ballast for Fluorescent Lamps with Constant Filament Preheat Voltage

S. Ben-Yaakov, M. Shvartsas, G. Ivensky, Ben-Gurion University of the Negev, Beer-Sheva, ISRAEL

20.2 Piezoelectric-Transformer Inverter with Maximum-Efficiency Tracking and Dimming Control

S. Nakashima, T. Ninomiya, Kyushu University, Fukuoka, JAPAN; H. Ogasawara, H. Kakehashi, Matsushita Electric Works, Ltd., JAPAN

20.3 A High Efficiency HPF-ZCS-PWM Sepic for Electronic Ballast with Multiple Tubular Fluorescent Lamps

C.A. Canesin, F.T. Wakabayashi, Paulista State University, Ilha Solteira (SP), BRAZIL

20.4 Partitioning a Digitally Programmable Power-Control for Applications to Ballasts

D.C. Hopkins, University at Buffalo, Buffalo, NY; J. Moronski, Binghamton University, NY

20.5 Digitally Addressable DALI Dimming Ballast

C. Contenti, International Rectifier, El Segundo, CA

20.6 Series-Parallel Resonant Forward Inverter as a Cold Cathode Fluorescent Lamp (CCFL) Driver

W. Chen, Texas Instruments, Manchester, NH

20.7 A Behavioral SPICE Compatible Model of an Electrodeless Fluorescent Lamp

S. Ben-Yaakov, M. Shvartsas, Ben-Gurion University of the Negev, Beer-Sheva, ISRAEL; J. Lester, OSRAM SYLVANIA, Beverly, MA

Session 21, High Power PFC

Session Chairs: Michael A.E. Andersen, Technical University of Denmark; and Dusan Graovac, Baldor ASR GmbH

Thursday, March 14, 8:30 AM - 12:00 PM
Houston Ballroom C

21.1 A PFC Rectifier for Telecommunications High Power Applications

J.E. Baggio, H.A. Grundling, H. Pinheiro, H.L. Hey, J.R. Pinheiro, Universidade Federal de Santa Maria, Santa Maria, RS, BRAZIL

21.2 Novel Passive Soft Switching Schemes for High Power Single Phase PFC Rectifiers

Y. Deng, X. He, Zhejiang University, Hangzhou, Zhejiang, CHINA

21.3 Zero-Current-Switching (ZCS) Power Factor Pre-Regulator (PFP) with Reduced Conduction Losses

H.S. Choi, B.H. Cho, Seoul National University, Seoul, SOUTH KOREA
21.4 A Novel Single Phase Three-level Power Factor Correction with Passive Lossless Snubber ... 968
H. Wu, X. He, Zhejiang University, Hangzhou, CHINA

21.5 A Simplified Zero-Voltage-Switching PWM Three-Level Converter with Two Clamping Diodes .. 975
X. Ruan, D. Xu, L. Zhou, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province, CHINA

21.6 Zero-Voltage-Switching PWM Three-Level Converter with Current-Double-Rectifier 981
X. Ruan, B. Li, J. Li, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province, CHINA

21.7 Compensation Devices Solve Failure Mode of the Phase Shift ZVS Bridge During Light-Load Operation ... 988
G. Deboy, Infineon Technologies AG, Munich, GERMANY; J. Hancock, Infineon Technologies North America, San Jose, CA; M. Pürschel, U. Wahl, A. Willmeroth, Infineon Technologies AG, Munich, GERMANY

Session 22, PWM, Multi-Level and Parallel Converters
Session Chairs: Philip Cooke, Analog Devices Inc.; and Nathan O. Sokal, Design Automation, Inc.
Thursday, March 14, 2:00 PM - 5:30 PM
San Antonio Ballroom A

22.1 High Frequency Link Inverter Based on Multiple-Carrier PWM ... 997
P.T. Krein, X Geng, R. Balong, University of Illinois at Urbana-Champaign, Urbana, IL

22.2 Symmetrical SVPWM Pattern Generator using Field Programmable Gate Array Implementation .. 1004
S. Chen, G. Joós, Concordia University, Montreal, Quebec, CANADA

22.3 A Novel Passive Lossless Snubber for High Power Multilevel Inverters .. 1011
H. Wu, Y. Deng, R. Zhao, X. He, Zhejiang University, Hangzhou, CHINA

22.4 CWDC Strategy for Paralleled Multi-Inverter Systems Achieving a Weighted Output Current Distribution ... 1018
Y.K. Chen, Chien Kuo Institute of Technology, Chang-Hua, Taiwan; Y.E. Wu, T.F. Wu, C.P. Ku, National Chung Cheng University, Chia-Yi, Taiwan

22.5 Investigations on a Unified Controller for a Practical Hybrid Multilevel Power Converter 1024
T. Gopalarathnam, Texas A&M University, College Station, TX; M.D. Manjrekar, ABB Inc., New Berlin, WI; P.K. Steimer, ABB Industrie AG, Turgi, SWITZERLAND

22.6 A Novel Approach to the Control of Parallel Three-Phase Boost Converters that Combines Space-Vector Modulation with Variable-Structure Control 1031
S.K. Mazumder, University of Illinois, Chicago, IL; A.H. Nayfeh, D. Boroyevich, Virginia Polytechnic Institute and State University, Blacksburg, VA

22.7 Application of Synchronous and Stationary Frame Controllers for Unbalanced and Non-Linear Load Compensation in 4-Leg Inverters .. 1038
R.A. Gannett, Virginia Polytechnic Institute and State University, Blacksburg, VA; J.C. Sozio, Northrop Grumman, Sykesville, MD; D. Boroyevich, Virginia Polytechnic Institute and State University, Blacksburg, VA

Session 23, Utility Interface and High Power Electronics
Session Chairs: Sudip Mazumder, University of Illinois, Chicago; and Madhav D. Manjrekar, ABB Inc.
Thursday, March 14, 2:00 PM - 5:30 PM
San Antonio Ballroom B

23.1 A New Multiple Loops Linear Control Scheme Applied to a Current-Injection Three-Phase Unity-Power-Factor Rectifier .. 1047
H. Kanaan, St. Joseph University, Beirut, LEBANON; H.F. Blanchette, K. Al-Haddad, Ecole de Technologie Superieure, Montreal, Quebec, CANADA; R. Chaffai, L. Duguay, Emerson, St.-Laurent, Quebec, CANADA; F. Fnaiech, ESSTT - University of Tunis, Tunis, TUNISIA

...
23.2 Stationary Frame Harmonic Reference Generation for Active Filter Systems .. 1054
M.J. Newman, D.N. Zmood, D.G. Holmes, Monash University, Clayton, VIC, Australia

23.3 Design and Implementation of a Series Voltage Sag Compensator Under Practical Utility Conditions .. 1061
P.T. Cheng, C.C. Huang, National Tsing Hua University, Hsin-Chu, TAIWAN; C.C. Pan, Taiwan Salt Industrial Cooperation, Miao-Li, Taiwan; S. Bhattacharya, Siemens, Orlando, FL

23.4 A Study on DVR Control for Unbalanced Voltage Compensation .. 1068

23.5 A DC-DC Converter Adequate for Alternative Supply System Applications 1074
V.M. Pacheco, L.C. Frietas, J.B. Vieria, Jr, E.A.A. Coelho, V.J. Farias, Universidade Federal De Ubverlândia, Uberlândia, MG, BRAZIL

23.6 Seamless Transfer of Grid-Connected PWM Inverters between Utility-Interactive and Stand-Alone Modes .. 1081
R. Tirumala, N. Mohan, University of Minnesota, Minneapolis, MN; C. Henze, Analog Power Devices, Inc., Lakeville, MN

23.7 Phase Angle Balance Control for Harmonic Filtering of A Three Phase Shunt Active Filter System ... 1087
S. Chattopadhyay, V. Ramanarayanan, Indian Institute of Science, Bangalore, INDIA

Session 24, DC-DC Resonant and Bridge Converters
Session Chairs: Praveen Jain, Queen's University; and C. Wesley Tipton, U.S. Army Research Laboratory
Thursday, March 14, 2:00 PM - 5:30 PM
Houston Ballroom A

24.1 A New ZVCS Resonant Push-Pull DC/DC Converter Topology .. 1097
I. Boonyaroonate, S. Mori, Nippon Institute of Technology, Minamisaitama-gun, Saitama-ken, JAPAN

24.2 A ZVT PWM Boost Converter using an Auxiliary Resonant Source .. 1101
M.L. Martins, H.A. Gründling, H. Pinheiro, J.R. Pinheiro, H.L. Hey, Federal University of Santa Maria, Santa Maria, RS, BRAZIL

24.3 LLC Resonant Converter for Front End DC/DC Conversion .. 1108
B. Yang, F.C. Lee, Virginia Polytechnic Institute & State University, Blacksburg, VA; A.J. Zhang, G. Huang, Delta Power Electronics Center, Pudong, Shanghai, CHINA

24.4 An LCLC Resonant DC-DC Converter with PWM Control-Analysis, Simulation and Implementation .. 1113
K.J. Singh, IIT Kanpur, Kanpur, INDIA; G. Bachmann, TU Darmstadt, Darmstadt, GERMANY;
S.R. Doradla, IIT Kanpur, Kanpur, INDIA; P. Mutschler, TU Darmstadt, Darmstadt, GERMANY;
R. Ghosh, IIT Kanpur, Kanpur, INDIA

24.5 Large-Signal Modeling of the PRC-LCC Resonant Topology with a Capacitor as Output Filter .. 1120
J.A. Martin-Ramos, J. Diaz, A.M. Pernía, F. Nuño, J. Sebastian, Universidad de Oviedo, Gijon, SPAIN

24.6 A Low Loss High-Frequency Half-Bridge Driver with Integrated Power Devices using EZ-HV SOI Technology .. 1127
F. Li, D. Giannopoulos, I. Wacyk, Philips Research, Briarcliff Manor, NY

24.7 Dual-Bridge DC-DC Converter: A New Topology of No Deadtime DC-DC Converters 1133
W. Song, B. Lehman, Northeastern University, Boston, MA
Session 25, Power Electronics Applications
Session Chairs: Lothar Heinemann, ABB, Calor Emag Switchgear, and Pietro Scalia, University of Palermo
Thursday, March 14, 2:00 PM - 5:30 PM
Houston Ballroom B

25.1 An APWM Resonant Inverter Topology for High Frequency AC Power Distribution Systems ... 1141
M. Qiu, Concordia University, Montreal, Quebec, CANADA; P.K. Jain, Queen’s University, Kingston, Ontario, CANADA; H. Zhang, Cistel Technology, Inc. Ottawa Ontario, CANADA

25.2 A New Hybrid Control Scheme using Active-Clamped Class-E Inverter with Induction Heating Jar for High Power Applications ... 1148
D.Y. Lee, D.S. Hyun, Hanyang University Seongdong-Ku, Seoul, SOUTH KOREA; I. Choy, Intelligent System Control Research Center, Seoul, KOREA

25.3 A Digitally-Controlled, Low-Cost Driver for Piezoceramic Flight Control Surfaces in Small Unmanned Aircraft and Munitions ... 1154
W.C. Dillard, R.M. Nelms, Auburn University, Auburn, AL

25.4 Power Transfer Capability Analysis of a Contact-less Electric Vehicle Battery Charger ... withdrawn
C.S. Wang, G.A. Covic, O.H. Stielau, The University of Auckland, Auckland, NEW ZEALAND

25.5 Improved Ride-Through and Hold-Up Time Calculations ... withdrawn
R. White, Artesyn Technologies, Broomfield, CO

25.6 Performance Prediction of Distributed Power Systems based on Small-Scale Prototypes 1161
P. Li, B. Lehman, Northeastern University, Boston, MA

25.7 A Comparative Study of Resonant Inverter Topologies used in Induction Cookers 1168
S. Llorente, Universidad de Zaragoza, Zaragoza, SPAIN, and Bosch-Siemens Home Appliances Group, Zaragoza, SPAIN; F. Monterde, Bosch-Siemens Home Appliances Group, Zaragoza, SPAIN; J.M. Burdio, J. Acero, Universidad de Zaragoza, Zaragoza, SPAIN

Session 26, Medium Power PFC
Session Chairs: Brian T. Irving, Delta Products Corporation; and James P. Noon, Texas Instruments
Thursday, March 14, 2:00 PM - 5:30 PM
Houston Ballroom C

26.1 Design Optimization of a Boost Power Factor Correction Converter using Genetic Algorithms ... 1177
S. Busquets-Monge, Virginia Polytechnic Institute and State University, Blacksburg, VA; G. Soremekun, ADOPTECH, Inc., Blacksburg, VA; E. Hertz, C. Crebier, S. Ragon, J. Zhang, D. Boroyevich, Z. Gürdel, D.K. Lindner, Virginia Polytechnic Institute and State University, Blacksburg, VA; M. Arpilliere, Schneider Toshiba Inverter Europe, S.A., FRANCE

26.2 Comparison of Different Techniques to Realize PFC Boost Inductor ... 1183
V. Leonavicius, PEI Technologies, NMRC, Cork, IRELAND; M. Duffy, National University of Ireland, Galway, IRELAND; C. Ó Mathúna, PEI Technologies, NMRC, Cork, IRELAND; U. Boeke, Philips Research Laboratories, Aachen, GERMANY

26.3 A Unity High Power Factor Power Supply Rectifier using a PWM AC/DC Full Bridge Soft-Switching ... 1190
C.A. Gallo, Universidade Federal De Uberlândia, Uberlândia, MG, BRAZIL; J.A. Corrêa Pinto, Centro Federal de Educação Tecnológica do Pará, Belem, PA, BRAZIL; L.C. de Freitas, V.J. Farias, E.A.A. Coelho, J.B. Vieira, Jr., Universidade Federal De Uberlândia, Uberlândia, MG, BRAZIL

26.4 Two-Stage Power Factor Corrected Power Supplies: The Low Component-Stress Approach ... 1195
L. Petersen, M. Andersen, Technical University of Denmark, Lyngby, DENMARK
26.5 Wide Input Range Module for Rectified AC Power Distribution Demonstrator for Telecommunication System ... 1202
J. de la Peña, M. Rivas, A. Huertas, M. Pérez, M. Rascon, ALCATEL, Madrid, SPAIN

26.6 Simplified Input Current Waveshaping Technique by using Inductor Voltage Sensing for High Power Factor Isolated Sepic, Cuk and Flyback Rectifiers .. 1208
T. Tanitteerapan, S. Mori, Nippon Institute of Technology, Minamisaitama-gun, Saitama-ken, JAPAN

26.7 Design of the Basic Rectifier with LC Filter to Comply with the New Edition of the IEC1000-3-2 Current Harmonic-Limit Specifications (Edition 2.0) .. 1215
W.M. Lin, Fuzhou University, Fuzhou, Fujian, CHINA; J. Sebastián, A. Fernández, M.M. Hernando, P.J. Villegas, Universidad de Oviedo, Gijón, SPAIN

Author Index... follows page 614

Author index for Volume II.. follows page 1220