CONTENTS

Volume 1

Session 1, Plenary
Session Chair: Bruce Miller, Dell
Monday, March 11, 1:30 PM - 5:00 PM
Dallas Ballrooms A and B

1.1 System Approaches to Power Management .. 3
D. Monticelli, National Semiconductor, Santa Clara, CA

1.2 The Effective Engineer: A Challenge — Define Your Own Excellence! 8
C.E. Mullett, Condor DC Power Supplies, Inc., Oxnard, CA

1.3 Design Considerations for VRM Transient Response based on the Output Impedance 14
K. Yao, Y. Meng, P. Xu, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA

1.4 Flip-Chip Flex-Circuit Packaging for 42V/16A Integrated Power Electronics
Module Applications .. 21
Y. Xiao, R. Natarajan, T.P. Chow, E.J. Rymaszewski, R.J. Gutmann, Rensselaer Polytechnic Institute, Troy, NY

1.5 A High-Frequency 1.5 MVA H-Bridge Building Block for Cascaded Multilevel Converters using
Emitter Turn-Off Thyristor .. 27
S. Sirisukprasert, Z. Xu, B. Zhang, J. Lai, A.Q. Huang, Virginia Polytechnic Institute and State University, Blacksburg, VA

1.6 A Novel Direct Back EMF Detection for Sensorless Brushless DC (BLDC) Motor Drives 33
J. Shao, D. Nolan, T. Hopkins, STMicroelectronics, Schaumburg, IL

Session 2, Motor Drive Control
Session Chairs: Babak Fahimi, Electro Standards Laboratories; and Francesco Profumo, Politecnico di Torino
Tuesday, March 12, 8:30 AM - 12:00 PM
San Antonio Ballroom A

2.1 Four-Quadrant Control of a Switched Reluctance Motor for a Highly Dynamic Actuator Load 41
S. Hossain, I. Husain, The University of Akron, Akron, OH; H. Klode, Dayton Technical Center, Dayton, OH;
B. Lequesne, A. Omekanda, Delphi Automotive Systems, Shelby Twp., MI

2.2 Automatic Control of Excitation Parameters for Switched-Reluctance Motor Drives 48
Y. Sozer, D.A. Torrey, E. Mese, Advanced Energy Conversion, LLC, Cohoes, NY

2.3 Vector Control of Five-Phase Synchronous Reluctance Motor with Space Vector Pulse Width
Modulation (SVPWM) for Minimum Switching Losses.. 57
R. Shi, Universal Lighting Technologies, Madison, AL; H.A. Toliyat, Texas A&M University,
College Station, TX

2.4 Resilient Current Control of Five-Phase Induction Motor under
Asymmetrical Fault Conditions .. 64
H. Xu, Whirlpool Corporation, Benton Harbor, MI; H. Toliyat, Texas A&M University, College Station, TX;
L.J. Petersen, NAVSEA, Philadelphia, PA

2.5 A Simple Space-Vector PWM Algorithm for VSI-fed AC Motor Drives 72
R.C. Panaitescu, N. Mohan, University of Minnesota, Minneapolis, MN

2.6 Direct Synchronized PWM Techniques with Linear Control Functions for
Adjustable Speed Drives .. 76
V. Oleschuk, F. Blaabjerg, Aalborg University, Aalborg East, DENMARK

2.7 A Sensorless, Stable V/f Control Method for Permanent-Magnet
Synchronous Motor Drives ... 83
P.D.C. Perera, F. Blaabjerg, J.K. Pedersen, P. Thogersen, Aalborg University, Aalborg East, DENMARK
Session 3A, EMI and Packaging
Session Chair: Douglas C. Hopkins, University at Buffalo
Tuesday, March 12, 8:30 AM - 10:15 AM
San Antonio Ballroom B

3A.1 Effects of Switching Frequency Modulation on EMI Performance of a Converter using Spread Spectrum Approach 93
M. Rahkala, Rovaniemi Polytechnics, Rovaniemi, Finland; T. Suntio and K. Kalliomäki, University of Oulu, Finland

3A.2 Devices for the Separation of the Common and Differential Mode Noise: Design and Realization 100
F. Profumo, M. Chiado Caponet, Politecnico di Torino, Torino, ITALY

3A.3 Novel Power MOSFET Packaging Technology Doubles Power Density in Synchronous Buck Converters for Next Generation Microprocessors 106
A. Sawle, International Rectifier, Surrey, UNITED KINGDOM; C. Blake, D. Maric, International Rectifier, El Segundo, CA

3A.4 An Evaluation of Board-Mounted Power Module Packages 112
F. Liang, K. Wolf, V.J. Thottuvelil, G. Alameel, Tyco Electronics Power Systems, Mesquite, TX

Session 3B, Manufacturing and Marketing
Session Chair: Larry Gilbert, The Powerhouse Inc.
Tuesday, March 12, 10:45 AM - 12:00 PM
San Antonio Ballroom B

3B.1 Environmental Issues in Power Electronics (Lead-Free) 121
P.L.F. Le Fèvre, Ericsson Microelectronics AB, Kista-Stockholm, SWEDEN

3B.2 The Global Market for Power Supply and Power Management Integrated Circuits 126
N. Andrews, Venture Development Corporation, Natick, MA

3B.3 Standard Products (Brick Converters): Product Development, Marketing/ Advertising/ Selling and Making a Profit 132
M. Mankikar, Micro-Tech Consultants, Santa Rosa, CA

Session 4A, Magnetics Modeling
Session Chair: Van Niemela, Tyco Electronics
Tuesday, March 12, 8:30 AM - 10:15 AM
Houston Ballroom A

4A.1 Dynamic Lossy Inductor Model for Power Converter Simulation 137
P.L. Chapman, University of Illinois at Urbana-Champaign, Urbana, IL; S.D. Sudhoff, Purdue University, West Lafayette, IN

4A.2 New Modeling Strategy for the Fringing Energy in Magnetic Components with Air Gap 144
L.M. Escribano, R. Prieto, J.A. Oliver, J.A. Cobos, J. Uceda, Universidad Politecnica de Madrid (UPM), Madrid, SPAIN

4A.3 An Improved Two-Dimensional Numerical Modeling Method for E-Core Transformers 155
A.F. Hoke, C.R. Sullivan, Dartmouth College, Hanover, NH

4A.4 An Accuracy Assessment of 2-D vs. 3-D Finite Element Models for Ferrite Core, Sheet Wound Transformers 158
J.D. Lavers, E.D. Lavers, University of Toronto, Toronto, Ontario, CANADA
4B.1 The Uniform Turn-on of the Emitter Turn-Off Thyristor ... 167
Z. Xu, Y. Bai, B. Zhang, A.Q. Huang, Virginia Polytechnic Institute and State University, Blacksburg, VA

4B.2 A 1700V LPT-CSTBT with Low Loss and High Durability .. 173
E. Motto, J. Donlon, T. Nakagawa, Powerex, Inc., Youngwood, PA; Y. Ishimura, K. Satoh, J. Yamada,
M. Yamamoto, Mitsubishi Electric Corp., Fukuoka, JAPAN; S. Kusunoki, H. Nakamura, K. Nakamura,
Mitsubishi Electric Corp., Kumamoto, JAPAN

4B.3 A Resonant Power MOSFET/IGBT Gate Driver .. 179
I. de Vries, Turbo Switchers (Pty) Ltd., Cape Town, SOUTH AFRICA

5.1 An AC VRM Topology for High Frequency AC Power Distribution Systems 189
M. Qiu, Concordia University, Montreal, Quebec, CANADA; P.K. Jain, Queen’s University, Kingston,
Ontario, CANADA; H. Zhang, Cistel Technology, Ottawa, Ontario, CANADA

5.2 Effect of Target Impedance and Control Loop Design on VRM Stability 196
S.A. Chickamennahalli, S. Mahadevan, Intel Corporation, Chandler, AZ; E. Stanford, Intel Corporation,
Dupont, WA; K. Merley, Intel Corporation, Chandler, AZ

5.3 Critical Inductance in Voltage Regulator Modules .. 203
P.L. Wong, Linear Technology Corporation, Milpitas, CA; F.C. Lee, P. Xu, K. Yao, Virginia Polytechnic
Institute and State University, Blacksburg, VA

5.4 A Comparative Study of Control Schemes for Multi-Phase Voltage Regulator Modules withdrawn
W. Huang, J. Clarkin, ON Semiconductor, East Greenwich, RI; G. Schuellein, International Rectifier,
North Kingston, RI

5.5 Comparison of Three Topologies for VRM Fast Transient Application .. 210
Y.Y. Law, J.H. Kong, J.C.P. Liu, N.K. Poon, M.H. Pong, Hong Kong University, Hong Kong, CHINA

5.6 Novel Transient Cancellation Control Method for Future Generation of Microprocessors 216
J.A. Abu-Qahouq, N. Pongratanukul, I. Batarseh, T. Kasparis, University of Central Florida, Orlando, FL

5.7 Transient Current Compensation for Low-Voltage High-Current Voltage Regulator Modules 223
J. Luo, I. Batarseh, X.F. Gao, T. Wu, University of Central Florida, Orlando, FL

6.1 Optimizing the Design of Single-Stage Power Factor Correctors ... 231
J.A. Villarejo, Polytechnic University of Cartagena, Cartagena, SPAIN; J. Sebastián, A. Fernández,
M.M. Hernando, P.J. Villegas, University of Oviedo, Gijon, SPAIN

6.2 Universal Line Voltage Single-Stage AC/DC Converter ... 237
O. Garcia, C. Fernández, J.A. Cobos, J. Uceda, Universidad Politecnica de Madrid, Madrid, SPAIN
6.3 Flyback with Active Clamp: A Suitable Topology for Low Power and Very Wide Input Voltage Range Applications .. 242
P. Alou, O. Garcia, J.A. Cobos, J. Uceda, Universidad Politècnica de Madrid, Madrid, SPAIN;
M. Rascon, ALCATEL, Madrid, SPAIN

6.4 Comparison Between Two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications .. 249
G. Spiazzi, S. Buso, University of Padova, Padova, ITALY

6.5 A Bi-flyback PFC Converter with Low Intermediate Bus Capacitor and Tight Output Voltage Regulation for Universal Input Applications .. 256
W. Qiu, W. Wu, S. Luo, W. Gu, I. Batarseh, University of Central Florida, Orlando, FL

6.6 Parallel-Connected Single Phase Power Factor Correction Approach with Improved Efficiency .. 263
S. Kim, P.N. Enjeti, Texas A&M University, College Station, TX

6.7 Single-Switch Parallel Power Factor Correction AC/DC Converters with Inherent Load Current Feedback .. 270
Q. Zhao, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA;
J. Qian, Maxim Integrated Products, Plano, TX

Session 7, Sensorless Motor Drives
Session Chairs: David A. Torrey, Rensselaer Polytechnic Institute; and Miguel Velez,
University of Puerto Rico at Mayaguez
Wednesday, March 13, 8:30 AM - 12:00 PM
San Antonio Ballroom A

7.1 Sensorless Drive of SMPM Motor by High Frequency Signal Injection Method 279
J.H. Jang, S.K. Sul, Seoul National University, Seoul, SOUTH KOREA; J.I. Ha, K. Ida, M. Sawamura,
Yasakawa Electric Corporation, JAPAN

7.2 Low Cost Sensorless Control of Brushless DC Motors with Improved Speed Range 286
G.J. Su, J.W. McKeever, Oak Ridge National Laboratory, Knoxville, TN

7.3 Withdrawn By Author

7.4 Sensorless Control of Switched Reluctance Motor Drive Based on BEMF Calculation 293
F.R. Salmasi, Texas A&M University, College Station, TX; B. Fahimi, Electro Standards Laboratory,
Cranston, RI; H. Gao, M. Ehsani, Texas A&M University, College Station, TX

7.5 A Voltage Model Flux Observer Design Requiring No Stator Resistance or Voltage Signal Information .. 299
H.U. Rehman, United Arab Emirates University, Al-Ain U.A.E; L. Xu, Ohio State University, Columbus, OH

7.6 Implementation of Generic Sensorless Direct Field Oriented Control of AC Motors on a Low-Cost, Fixed-Point Digital Signal Processor .. 304
M. Konghirun, L. Xu, The Ohio State University, Columbus, OH; D. Figoli, Texas Instruments Incorporated,
Stafford, TX

7.7 A Modified PWM Scheme in Order to Obtain Spatial Information of AC Machines without Mechanical Sensor .. 310
T.W. Wolbank, J. Machl, Vienna University of Technology, Vienna, AUSTRIA
Session 8, Magnetic and Piezoelectric Devices

Session Chairs: Ed Bloom, *e/j BLOOM Associates Inc.*; and Conor Quinn, *Artesyn Technologies*

Wednesday, March 12, 8:30 AM - 12:00 PM

San Antonio Ballroom B

<table>
<thead>
<tr>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 PCB Integrated Inductor for Low Power DC/DC Converter</td>
<td>319</td>
</tr>
<tr>
<td>M. Ludwig, M. Duffy, T. Donnell, C. Mathuna, PEI Technologies, NMRC, Cork, IRELAND</td>
<td></td>
</tr>
<tr>
<td>8.2 Experimental Evaluation of the Core Losses in the Magnetic Components used in PFC Converters: Application to Optimize the Flyback Structure Losses</td>
<td>326</td>
</tr>
<tr>
<td>C. Larouci, J.P. Ferrieux, L. Gerbaud, J. Roudet, S. Catellani, Laboratoire d'Electrotechnique de Grenoble, Grenoble, FRANCE</td>
<td></td>
</tr>
<tr>
<td>8.3 Improved Loss Determination for Planar Integrated Power Passive Modules</td>
<td>332</td>
</tr>
<tr>
<td>J.T. Strydom, J.D. van Wyk, Virginia Polytechnic and State University, Blacksburg, VA</td>
<td></td>
</tr>
<tr>
<td>8.4 Design Issues of a Core-less Transformer for a Contact-less Application</td>
<td>339</td>
</tr>
<tr>
<td>C. Fernández, O. Garcia, R. Prieto, J.A. Cobos, Universidad Politécnica de Madrid (UPM), Madrid, SPAIN; S. Gabriels, G. Van Der Borght, Cochlear Technology Centre Europe, Edegem, BELGIUM</td>
<td></td>
</tr>
<tr>
<td>8.5 Integrated Magnetic for LLC Resonant Converter</td>
<td>346</td>
</tr>
<tr>
<td>B. Yang, R. Chen, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA</td>
<td></td>
</tr>
<tr>
<td>8.6 An Actively Cooled High Power, High Frequency Transformer with High Insulation Capability</td>
<td>352</td>
</tr>
<tr>
<td>L. Heinemann, ABB High Voltage Products, Hanau, GERMANY</td>
<td></td>
</tr>
<tr>
<td>8.7 Comparison of Different Alternatives to Drive Piezoelectric Transformers</td>
<td>358</td>
</tr>
<tr>
<td>M. Sanz, P. Alou, R. Prieto, J.A. Cobos, J. Uceda, Universidad Politecnica de Madrid, Madrid, SPAIN</td>
<td></td>
</tr>
</tbody>
</table>

Session 9, DC-DC Control

Session Chairs: José A. Cobos, *Universidad Politécnica de Madrid*; and Jian Sun, *Rockwell Collins, Inc*

Tuesday, March 13, 8:30 AM - 12:00 PM

Houston Ballroom A

<table>
<thead>
<tr>
<th>Session Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 A Stability Assessment Tool for DC-DC Converters</td>
<td>367</td>
</tr>
<tr>
<td>C. Gezgin, W.C. Bowman, V.J. Thottuvelil, Tyco Electronics Power Systems, Mesquite, TX</td>
<td></td>
</tr>
<tr>
<td>9.2 High-Frequency Digital Controller IC for DC/DC Converters</td>
<td>374</td>
</tr>
<tr>
<td>B.J. Patella, A. Prodić, A. Zirger, D. Maksimović, University of Colorado at Boulder, Boulder, CO</td>
<td></td>
</tr>
<tr>
<td>9.3 PID Controller Modifications to Improve Steady-State Performance of Digital Controllers for Buck and Boost Converters</td>
<td>381</td>
</tr>
<tr>
<td>L. Guo, J.Y. Hung, R.M. Nelms, Auburn University, Auburn, AL</td>
<td></td>
</tr>
<tr>
<td>9.4 Stability and Dynamic Response Improvement of Flyback DC-DC Converter by a Novel Control Scheme</td>
<td>389</td>
</tr>
<tr>
<td>9.5 Analysis and Small-Signal Modeling of Self-Oscillating Converters with Applied Switching Delay</td>
<td>395</td>
</tr>
<tr>
<td>9.6 Soft-Switching Zeta Converter with an Asymmetrical PWM Control</td>
<td>402</td>
</tr>
<tr>
<td>T.F. Wu, S.A. Liang, Y.M. Chen, National Chung Cheng University, Chia-Yi, TAIWAN</td>
<td></td>
</tr>
<tr>
<td>9.7 Synergetic Synthesis of DC-DC Boost Converter Controllers: Theory and Experimental Analysis</td>
<td>409</td>
</tr>
</tbody>
</table>
Session 10, Modeling, Simulation and Control
Session Chairs: Chuck Mullett, Condor DC Power Supplies; and Cahit Gezgin, Tyco Electronics Power Systems
Tuesday, March 13, 8:30 AM - 12:00 PM
Houston Ballroom B

10.1 Parallel-Connected Converters with Maximum Power Tracking .. 419
K. Siri, K.A. Conner, The Aerospace Corporation, El Segundo, CA

10.2 Optimum Control Design of PWM-Buck Topologies to Minimize Output Impedance 426
A. Soto, P. Alou, J.A. Oliver, J.A. Cobos, J. Uceda, Universidad Politecnica de Madrid (UPM), Madrid, SPAIN

10.3 Real-Time PC-Based Simulator of Electric Systems and Drives ... 433
S. Abourida, C. Dufour, J. Bélanger, G. Murere, N. Léchevin, B. Yu, Opal-RT, Montreal, Quebec, CANADA

10.4 A Method for Inductor Core Loss Estimation in Power Factor Correction Applications 439
J. Liu, Virginia Polytechnic Institute and State University, Blacksburg, VA; T.G. Wilson, Jr., R.C. Wong, R. Wunderlich, Transim, Incorporated, Boston, MA; F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA

10.5 A Unified Approach to Compact Modeling of Power and Logic Devices in Low-Cost nMOS-Based Smart Power Technology ... 446
A. Roncaglia, N. Speciale, University of Bologna, Bologna, ITALY; G.C. Cardinali, Lamel CNR, Bologna, ITALY; M. Rudan, University of Bologna, Bologna, ITALY

10.6 Parameter Extraction for a Power Diode Circuit Simulator Model Including Temperature Dependent Effects ... 452
X. Kang, A. Caiafa, E. Santi, J.L. Hudgins, University of South Carolina, Columbia, SC; P.R. Palmer, University of Cambridge, Cambridge, UNITED KINGDOM

10.7 Optimization Design of a Single-Stage AC-DC Converter with Averaging Circuit Model and MathCAD® ... 459
S. Luo, Tyco Electronics Power Systems, Inc., Mesquite, TX; W. Qiu, C. Iannello, I. Batarseh, University of Central Florida, Orlando, FL

Session 11, Control and Circuit Techniques
Session Chairs: Neil J. Barabas, B&R Electronics; and Vladimir Muratov, Intersil Corporation
Tuesday, March 13, 8:30 AM - 12:00 PM
Houston Ballroom C

11.1 Concurrent and Simple Digital Controller of an AC/DC Converter with Power Factor Correction ... 469
P. Zumel, A. de Castro, O. García, T. Riesgo, J. Uceda, Universidad Politécnica de Madrid (UPM), Madrid, SPAIN

11.2 Digitally Controlled Low-Harmonic Rectifier Having Fast Dynamic Responses 476
A. Prodic, J. Chen, R.W. Erickson, D. Maksimovic, University of Colorado at Boulder, Boulder, CO

11.3 A Modified Control Scheme to Alleviate DC Voltage Stress in Active Clamp PFC AC/DC Converter with Universal Input ... 483
W. Wu, APECOR Co., Orlando, FL; W. Qiu, W. Gu, I. Batarseh, University of Central Florida, Orlando, FL

11.4 Multi-Input Converter with Power Factor Correction and Maximum Power Point Tracking Features ... 490
Y.M. Chen, Y.C. Liu, F.Y. Wu, Y.E. Wu, National Chung Cheng University, Chia-Yi, TAIWAN

11.5 Low Loss Modulation of PWM-Rectifiers ... 497
C. Attaianese, G. Tomasso, University of Cassino, Cassino, ITALY

11.6 Analysis, Design, and Performance Evaluation of Flying-Capacitor Passive Lossless Snubber Applied to PFC Boost Converter ... 503
B.T. Irving, M.M. Jovanovi, Delta Products Corporation, Research Triangle Park, NC

11.7 A Boost Converter with Lossless Snubber under Minimum Voltage Stress 509
W. Dong, Q. Zhao, J. Liu, F.C. Lee, Virginia Polytechnic Institute and State University, Blacksburg, VA
Session 12A, Resonant and Soft-Switching Converters
Session Chair: S.R. Doradla, Indian Institute of Technology
Wednesday, March 13, 2:00 PM - 3:45 PM
Houston Ballroom A

12A.1 Zero Voltage Switching DC Link Single-Phase Pulse-Width Modulated Voltage Source Inverter .. 519
R. Gurunathan, General Electric, Bangalore, INDIA; A.K.S. Bhat, University of Victoria, Victoria, British Columbia, CANADA

12A.2 Zero-Current and Zero-Voltage Soft-Transition Commutation Cell for PWM Inverters 525
C.M.O. Stein, H.A. Gründling, H. Pinheiro, J.R. Pinheiro, H.L. Hey, Federal University of Santa Maria, Santa Maria, RS, BRAZIL

12A.3 Half-Bridge Two-Amplitude Actively Clamped Resonant DC-Link Inverter 532
T. Liu, J. Ying, D. Zhang, F. Wang, Zhejiang University, Hangzhou, CHINA

12A.4 Single-Stage Resonant Boost AC-DC-AC Converter ... 537
S. Yuvarajan, S. Xu, North Dakota State University, Fargo, ND

Session 12B, EMI and PWM Filtering
Session Chair: T.A. Lipo, University of Wisconsin
Wednesday, March 13, 4:15 PM - 5:30 PM
Houston Ballroom A

12B.1 A Novel Active Common-mode EMI Filter for PWM Inverter ... 545
Y.C. Son, S.K. Sul, Seoul National University, Seoul, KOREA

12B.2 An Inverter Output Filter to Mitigate dv/dt Effects in PWM Drive System 550
L. Palma, P. Enjeti, Texas A&M University, College Station, TX

12B.3 Adverse Effects in Voltage Source Inverter-Fed Drive Systems ... 557
Z. Peroutka, V. K s, University of West Bohemia, Pízeň, CZECH REPUBLIC

Session 13, Uninterruptible Power Systems
Session Chairs: Barry Paprerner, Emerson Energy Systems; and B. K. Lee, Texas A&M University
Wednesday, March 13, 2:00 PM - 5:30 PM
San Antonio Ballroom A

13.1 Analysis and Design of a New High-Efficiency Bi-Directional ZVT PWM Converter for DC Bus and Battery Bank Interface ... 567
L. Schuch, C. Rech, H. Pinheiro, H.L. Hey, H.A. Gründling, J.R. Pinheiro, Federal University of Santa Maria, Santa Maria, RS, BRAZIL

13.2 Compensation of Cable Voltage Drops and Automatic Identification of Cable Parameters in Ground Power Units ... 574
U. Borup, B. Vork Nielsen, AXA Power Aps, Odense, Denmark; F. Blaabjerg, Aalborg University, Aalborg, Denmark

13.3 Dead Beat Control for Parallel Connected UPS .. 580
A. Daneshpooy, Silicon Power, Exton, PA

13.4 Dual AC-Input Power System Architectures .. 584
M.M. Jovanović, Delta Products Corporation, Research Triangle Park, NC

13.5 DSP Control Method of Single-Phase Inverters for UPS applications ... 590
L. Mihalache, Power Conversion Technologies Inc., Harmony, PA

13.6 Uninterruptible Power Supplies: Classification, Operation, Dynamics, and Control 597
S.B. Bekiarov, A. Emadi, Illinois Institute of Technology, Chicago, IL

13.7 A Fuel Cell Based Domestic Uninterruptible Power Supply .. 605
E. Santi, D. Franzoni, A. Monti, D. Patterson, F. Ponci, University of South Carolina, Columbia, SC; N. Barry, Cork Institute of Technology, Cork, IRELAND