27th European Conference on Optical Communication

Symposia on Selected Topics:
• Convergence of IP and Optical Networking
• Polymer Fiber Communication
• Optical Interconnects
• Photonic Crystals, from Physical Concepts to Device Implementation

September 30 – October 4, 2001
RAI Congress Centre
Amsterdam, The Netherlands

Organised by: COBRA – TU Eindhoven
Sponsored by: JDS Uniphase
KPN
Lucent Technologies
Supporting organisations: IEEE/LEOS, EUREL
VOLUME III

Session: Long Distance with WDM Systems
Session Chair: Beylat J.-L.

We.F.1.1 - Transoceanic transmission (invited)
Bergano N.S.
TyCom Laboratories, Eatontown, USA.

We.F.1.2 - Modeling and experiments of Raman assisted ultra long-haul terrestrial transmission
over 7500 km
Balslev Clausen C. et al.
Terra Worx, Shrewsbury, NJ, USA.

We.F.1.3 - 32 x 40 Gbit/s WDM transmission over 1704 km
Hugbart A., Uhel R., Varelli G., Grandpierre G., Gautheron O., Marcou J.F.
Alcatel Submarine Networks, France.

We.F.1.4 - 1.28 Tbit/s (64 x 20 Gbit/s) transmission over 4,200 km with 100 km repeater spacing
consisting of Raman/EDF Hybrid amplifiers
Ishida K., et al.

We.F.1.5 - 25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span
Le Guen D., Lobo S., Merlaud F., Billes L., Georges T.
Corvis Algety, Lannion, France.

We.F.1.6 - 2400-km transmission of 100-GHz-spaced 40-Gb/s WDM signals using a “double-hybrid” fiber configuration
Inada Y. et al.
Submarine Systems Division, NEC Corporation, Kawasaki-shi, Japan.

Symposium on Optical Interconnect (I)
Wednesday, October 3, 2001, Room A, 08.30 – 10.15 hrs.
Session Chair: Malinverni P.

We.A.1.1 - Welcome and introduction
Malinverni P.
European Community

We.A.1.2 - SMT-Compatible Optical -I/O Packages for Chip-Level Optical Interconnects (Invited)
Yuzo I.
NTT Telecommunications Energy Laboratories, Japan.

We.A.1.3 - <title not available at time of printing> (invited)
Honey D.
DARPA, USA.

We.A.1.4 - Intelligent multi-fiber interface module for high bit-rate inter-processor data transfer
Rizzi N.A., Yaqoob Z.
Photonic Information Processing Systems Lab., School of Optics/CREOL, UCF, Orlando, FL, USA.

We.A.1.5 - Optical backplane
Moisel J., Huber H.-P., Guttmann J., Krumpholz O., Lunitz B., Rode M., Schoedbauer R.
DaimlerChrysler Research Center Ulm, Germany.
Session: Management and Control
Wednesday, October 3, 2001, Room B, 08.30 – 10.15 hrs.
Session Chair: Gladisch A.

We.B.1.1 - Design and experiments of an automatic switched optical network (ASON) ... 256
Raptis L. e.a.
National Technical University of Athens, Greece.

We.B.1.2 - Wavelength multiplexing of MPLS connections ... 258
Callegati F., Cerroni W., Corazza G., Raffaelli C.
University of Bologna, Italy.

We.B.1.3 - WDM packet routing prototype incorporating a bandwidth allocation function 260
Kuwano S., Teshima M., Uematsu H., Iwatsuki K.
NTT Network Innovation Lab., Kanagawa, Japan.

We.B.1.4 - Distributed provisioning with QoS in WDM networks with selective electronic regeneration 262
Jukan A., Franzl G.
Vienna Univ. of Techn., Inst. Comm. Netw., Austria.

We.B.1.5 - Management system for full-mesh WDM AWG-star network (invited) ... 264
Sakai Y., Noguchi K., Yoshimura R., Sakamoto T., Okada A., Matsuoka M.
NTT Photonics Laboratories, Kanagawa, Japan.

We.B.1.6 - Optical fiber line testing system using test light bypass module for ADM ring networks 266
Enomoto Y., Honda N., Izumita H., Nakamura M.
NTT Access Network Service Systems Laboratories.

Session: Fibres & Devices
Wednesday, October 3, 2001, Room L, 08.30 – 10.00 hrs.
Session Chair: Richardson D.J.

We.L.1.1 - S-band CW lightwave generation using four-wave mixing in high-nonlinearity fiber 268
Matsushita S.I., Namiki S., Aso O., Sakano M.
Fitel Photonics Laboratory, The Furukawa Electric Co. Ltd., Chiba, Japan.

We.L.1.2 - Nonlinear index measurements of various fibre types over C+L bands using four-wave mixing 270
Antona J.C. (1), Bigo S. (1), Kosmalski S. (2)
(1) Alcatel, Research & Innovation, Marcoussis Cedex (2) Alcatel Cable France,
Conflans St. Honorine, France.

We.L.1.3 - Demonstration of wavelength exchange in a highly-nonlinear fiber (invited) 272
Wong K.K.Y. (1), Marhic M.E. (1), Uesaka K. (2), Kazovsky L.G. (1)
(1) Depart. of Electrical Engineering, Stanford, CA, USA.
(2) On leave from Sumitomo Electric Industries, Ltd., Japan.

We.L.1.4 - Nonlinear optical intensity filters: experiment and design rules ... 274
(1) Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbH, Berlin, Germany.

We.L.1.5 - A novel method for optical fibre dispersion measurement ... 276
and its application to in-service monitor
Takushima Y., Kikuchi K.
Session: High Speed Transmission
Wednesday, October 3, 2001, Forum, 10.45 – 12.30 hrs
Session Chair: Doran N.

We.F.2.1 - 40 Gbit/s optical 3R regenerator for all-optical networks (invited) ... 278
Otani T., Suzuki M., Yamamoto S. *
KDDI R&D Lab, Inc., Japan, *KDDI Labs USA, Inc.

We.F.2.2 - 1700-km transmission at 40-Gb/s with 100km amplifier-spacing enabled. 282
by higher-order-mode dispersion-compensation
Ramachandran S., et al.
Bell Laboratories, Lucent Technologies, NJ, USA.

We.F.2.3 - 80- to 10- Gb/s clock recovery using an electro-optic phase-locked loop 284
Carruthers T., Lou J.
Optical Sciences Division, Naval Research Laboratory, Washington, DC, USA.

We.F.2.4 - Novel all-optical 3R regenerator using cross-absorption modulation 286
in RF-driven electroabsorption waveguide
Nishimura K., Tsurusawa M., Usami M.
KDD R&D Laboratories Inc., Saitama, Japan.

We.F.2.5 - Eye monitoring in a 160 Gbit/s RZ field transmission system .. 288
(1) Alcatel Research & Innovation, Stuttgart (2) HHI für Nachrichtentechnik, Berlin, Germany.

We.F.2.6 - Cascade of 100 optical 3R regenerators at 40 Gbit/s based .. 290
on all-active Mach Zehnder interferometers
Lavigne B. et al.
Alcatel CIT/Alcatel Corporate Research Centre, Marcoussis, France.

Symposium on Optical Interconnect (II)
Wednesday, October 3, 2001, Room A, 10.45 – 12.30 hrs.
Session Chair: Malinverni P.

We.A.2.1 - Free-space optical interconnect with improved signal-to-noise ratio .. 292
Petrovic N.S., Rakic A.D., Majewski M.L.
School of Computer Science and Electrical Eng., The Univ. of Queensland, Brisbane, Australia.

We.A.2.2 - Impact of optical I/O on FPGA electronic routing delays ... 294
Dambre J., et al.
Electronics and Inf. Systems, Ghent Univ., Belgium.

We.A.2.3 - Inter-chip optical interconnects using imaging fiber bundles and integrated CMOS detectors 296
Rooman C. et al.
University of Brussels (VUB), Belgium.

We.A.2.4 - Demonstrating POF based optoelectronic inter-connect in a multi-FPGA prototype system 298
Brunfaut M. et al.
Electronics and Inf. Systems, Ghent Univ., Belgium.

We.A.2.5 - WDM interconnection using PLC hybrid technology for 5-Tbit/s electrical switching system 300
Akahori Y. et al.
NTT Photonics Laboratories, Ibaraki, Japan.
We.A.2.6 - Polymer optical waveguides integrated in printed circuit boards 302
Lehmacher S. et al.
Univ. Dortmund, Germany.

Session: Optical Packet Switching
Wednesday, October 3, 2001, Room B, 10.45 – 12.30 hrs.
Session Chair: Van Bochove K.

We.B.2.1 - All optical pattern recognition using a segmented semiconductor optical amplifier 304
Petruzzi P., Richardson C.J.K., Van Leeuwen M., Moulton N., Goldhar J.
Laboratory for Physical Sciences and Department of Electrical and Computer Engineering
University of Maryland, MD, USA.

We.B.2.2 - All-optical data addition to a time slot in 160-Gb/s OTDM signal .. 306
using wavelength conversion by supercontinuum in a nonlinear fiber
Futami F., Watanabe S.
Fujitsu Laboratories Ltd., Kawasaki, Japan.

We.B.2.3 - 80G to 10 Gbit/s variable rate photonic packet routing based on multi-wavelength label switch 308
Wada N., Harai H., Chujo W., Kubota F.
Communications Research Lab., Tokyo, Japan.

We.B.2.4 - All-optical switching of packets for all-optical buffering purposes .. 310
Liu Y., Hill M.T., de Waardt H., Dorren H.J.S.
COBRA Research Institute, University of Technology Eindhoven, The Netherlands.

We.B.2.5 - Demonstration of multi-wavelength all-optical header recognition 312
using a PPLN and optical correlators (invited)
Parameswaran K.R.(2), Fejer M.M. (2)
(1) University of Southern California, Dept. of Electrical Engineering Systems, Los Angeles, CA, USA.
(2) Stanford University, Department of Applied Physics, Palo Alto, CA, USA.

We.B.2.6 - Semiconductor optical amplifiers: a key technology to control the packet power variation 314
Chiaroni D., Le Sauze N., Zami T., Emery J.Y.
Alcatel Research & Innovation, Marcoussis, France.

Session : Passive Devices
Wednesday, October 3, 2001, Room L, 10.45 – 12.30 hs.
Session Chair: Sudbo A.

We.L.2.1 - Passive athermal bulk-optic MUX/DEMUX with flat-top spectral response 316
Chassange B., Aubry K., Rocher A., Herbette B., Dentant V., Bourzeix S., Martin P.
GN Nettest, Photonics Division, Telecom Components, Marly le Roi, France.

We.L.2.2 - Suppression of multi-channel FBG’s reflection side lobes by using phase optimization technique 318
Shiozaki M., Iwashima T., Murashima K., Shibata T., Inoue A., Suganuma H.
Sumitomo Electric Industries Ltd., Kanagawa, Japan.

We.L.2.3 - Non-destructive characterisation of fibre couplers (invited) .. 320
Alegría C., Ghiringhelli F., Zervas M.N
Optoelectronics Research Centre, University of Southampton, UK.

We.L.2.4 - Microbending in photonic crystal fibres - an ultimate loss limit? 322
COM, Techn. Univ. of Denmark, Lyngby, Denmark.
We.L.2.5 - Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method
Hasegawa T. et al.
Sumitomo Electric Industries Ltd., Yokohama, Japan

We.L.2.6 - A new converter based on hollow optical fiber for gigabit LAN communication
Choi S. et al.
Kwangju Inst. of Science and Techn., Dept. of information and Comm., Korea.

Session: 40 Gbit/s Transmitters
Session Chair: Bennion I.

We.F.3.1 - Ultrafast electroabsorption modulators with travelling-wave electrodes (invited)
Yamanaka T.
NTT Photonics Laboratories, Kanagawa, Japan.

We.F.3.2 - 40 Gbit/s modulator with low drive voltage and high optical output power
Moodie D.G., Ellis A.D., Cannard P.J., Ford C.W., Barrell A.H., Moore R.T., Perrin S.D., McLaughlin R.I., Garcia F.
Corning Research Centre, Martlesham Heath, Ipswich, Suffolk, UK.

We.F.3.3 - Low-drive-voltage 40 Gb/s modulator on X-cut LiNbO3 wafer
Kondo J. et al.
NGK Insulators Ltd., Aichi, Japan.

We.F.3.4 - Compact and fully-packaged fibre grating laser-based RZ pulse source for 40Gbit/s OTDM transmission systems
Mikhailov V. (1), Bayvel P. (1), Lealman I. (2), Wyatt R. (2)

We.F.3.5 - 40 GHz hybrid semiconductor pulse generating laser (PGL) for RZ transmission
R&D Department, CyOptics, Yokneam-Ilit, Israel.

We.F.3.6 - Mode-locked lasers for 43-Gb/s carrier-suppressed return-to-zero pulse generation
Sato K. (1), Kuwahara S. (1), Miyamoto Y. (1), Murata K. (2), Miyazawa H. (2)
(1) NTT Network Innovation Lab, Kanagawa-ken (2) NTT Photonics Lab, Kanagawa-ken, Japan.

Session: Polarization Mode Dispersion II
Wednesday, October 3, 2001, Room A, 14.00 – 15.45 hrs.
Session Chair: Lefèvre H.

We.A.3.1 - Distributed birefringence measurement in optical fibres
Wuilpart M. et al.
Faculté Polytechnique de Mons, Belgium.

We.A.3.2 - Statistical modelling of a higher-order PMD emulator
Leminger O., Leppa R.
T-Nova Deutsche Telekom Innovationgesellschaft mbH, Technologiezentrum, Darmstadt, Germany.

We.A.3.3 - Optical fiber properties for long-haul transmission (invited)
Nelson L.
Optical Fiber Solutions, Lucent Technologies, USA.
We.A.3.4 - Suppression of PMD induced pulse broadening by using nonlinear evolution of polarization mode-coupling
Sotobayashi H. et al.
Communications Research Laboratory, Independent Administrative Institution, Tokyo, Japan

We.A.3.5 - Analytical calculation for PMD compensation up to second order
Merker T., Schwarzbeck A., Meissner P.
Institut für Hochfrequenztechnik, Technische Universität Darmstadt, Germany.

We.A.3.6 - PDL reduction of long-period fiber grating by rotating exposure method
Ishii Y., Okude S., Nishide K., Wada A.
Optics and Electronics Laboratory, Fujikura Ltd., Chiba, Japan

Session: LAN & ACCESS
Wednesday, October 3, 2001, Room B, 14.00 – 15.45 hrs.
Session Chair: Gambini P.

We.B.3.1 - 1.25Gbps single fiber transceivers using low cost polymer straight waveguide for 1.3/1.55mm data-links
Nakanishi H., et al.
OE R&D Lab, Sumitomo Electric Ind. Ltd., Japan.

We.B.3.2 - Demonstration of an ONU for WDM access network with downstream BPSK and upstream remodulated OOK data using injection-locked FP laser
Cheung S.Y. et al.
Inf. Eng. Dept., The Chinese Univ. of Hong Kong

We.B.3.3 - Interferometric noise penalty in 10 Gb/s LAN links
Sefer G., Pepejugoski P.
IBM Research, NY, USA.

We.B.3.4 - Applicability of DMD-measurements to new 10-gigabit-ethernet fibres
Bunge C.A. et al.
TU Berlin, Germany.

We.B.3.5 - The status of the ten-gigabit Ethernet standard (invited)
Cunningham D.G.
Agilent Technologies, Inc., USA

We.B.3.6 - All-optical burst support for optical packets
(1) Telcordia Technologies, Inc, Red Bank, NJ, USA.
(2) Telcordia Technologies, Inc. (3,4) US Dept. of Defense, USA.

Session: Fiber Based Lasers + Non-Linearities
Wednesday, October 3, 2001, Room L, 14.00 - 15.45 hrs.
Session Chair: Lenstra D.

We.L.3.1 - Transparent wavelength conversion in fiber with nm pump tuning range
Westlund M. et al.
Chalmers University of Technology, Photonics Laboratory, Göteborg, Sweden.
We.L.3.2 - Highly efficient fiber four-wave mixing without idler spectral broadening .. 372
by binary phase-shift-keying modulation of pump wave
Tanemura T., Lim H.C., Kikuchi K.
Research Center for Advanced Science and Technology, University of Tokyo, Japan.

We.L.3.3 - Rational harmonically mode-locked fibre ring laser generating highly stable, higher-order optical pulse trains
Gupta K.K., Onodera N., Hyodo M.

We.L.3.4 - 40 kW sub-picosecond pulse generation using cladding-pumped Er3+/Yb3+ fibers 376
Kulcsar G. et al.
Keopysys SA, Lannion, France.

We.L.3.5 - Crosstalk in fiber parametric amplifier .. 378
Krastev K., Rothman J.
Corning, Avon, France.

Poster Session
Wednesday, October 3, 2001, Lounge Main Auditorium, 16.00 - 18.00 hrs.

We.P.1 - Macrobending loss properties of photonic crystal fibres with different air filling fractions 380
Sørensen T. et al.
COM, Techn.Univ., DTU, Lyngby, Denmark.

We.P.2 - Ultra-wideband response in Co2+-doped fiber attenuators .. 382
Nouchi K., et al.
Showa Electric Wire &Cable Co., Kanagawa, Japan.

We.P.3 - New EDF design for high power and low nonlinearity applications ... 384
Seo H.K., et al.

We.P.4 - Ultra-long-period fiber gratings .. 386
Shu X., et al.
Photonics Res., Aston Univ., Birmingham, UK.

We.P.5 - Complete characterization of ultrashort optical pulses using chirped fiber Bragg grating 388
Berger N.K., et al.
Dept. of Electrical Eng., Technion -Israel Inst.of Techn., Technion City, Haifa, Israel.

We.P.6 - Contribution of the transverse asymmetry of the index change to the birefringence of fiber Bragg gratings: a numerical calculation
Dossou K. et al.
Univ. Laval, Dept. of E&C Eng., Canada.

We.P.7 - Study on the design of non-zero dispersion shifted fiber for ultra-wide band WDM transmission 392
Lee W.et al.

We.P.8 - Current-directionality-induced fundamental absorption dichroism in degenerate III-V semi-conductors and its potential for dynamic polarisation control in VCSELs
Ryvkin B.S.et al.
Heriot-Watt Univ., Dept of Physics, Edinburgh, UK.
We.P.9 - Ultrafast operation of four-wave mixing switches using the quasi-phase matched cascaded second-order nonlinear effect
Fukuchi Y., et al.

We.P.10 - Demonstration of optically-controlled switching in nonlinear directional coupler loaded with grating
Nakatsuahara K et al.
Dept. of E&E Eng., Kanagawa Inst. of Techn., Japan.

We.P.11 - The novel structure of C plus L-band erbium-doped fiber amplifier
Hwang S.T. et al.
Telecom. R&D Center, Samsung Electronics Suwon, Kyungki-Do, Korea.

We.P.12 - Impact of package resonance on eye diagram in high-speed optical modules
Kaneko S.-I., et al.

We.P.13 - Reduction of waveform distortion in semiconductor optical amplifier using internal birefringence and slope filtering
Cai W., et al.

We.P.14 - 10Gb/s single-mode operation of two-contact InGaAsP lasers with ultra-low drive current
Massara A.B., et al.
Ctr. Comm. Res., Univ. of Bristol, Bristol, UK.

We.P.15 - Reliability of interleaving filter using planar lightwave circuit
Nounen H., et al.
Hitachi-Cable Ltd., Ibaraki-ken, Japan.

We.P.16 - 50 channel and 50 GHZ multiwavelength laser source
Pleros N., et al.

We.P.17 - A one-step technique in fabricating InGaAs-InGaAsP monolithic multiple-wavelength laser arrays
Lim H.S. et al.

We.P.18 - A new source for incoherent 2-dimensional coding in FO-CDMA
Wang X., Chan K.T.
Dept. of Elect. Eng., Chinese Univ. of Hong Kong.

We.P.19 - 4-channel wavelength-division multiplexers fabricated from polyimide waveguides
Kobayashi J., et al.
NTT Advanced Technology Corp., Tokyo, Japan.

We.P.20 - A wedge-shaped GIF for coupling between an SMF and a high-power LD having ultra-high aspect ratio
Yoda H., et al.
Fac. of Eng., Utsunomiya Univ., Japan.

We.P.21 - A novel tunable DFB/DBR laser with lateral grating for WDM
Körbl M., et al.
Physikalisches Inst., Univ.Stuttgart, Germany.
We.P.22 - Amplitude equalization of high-repetition-rate pulses in rational harmonic mode-locked erbium-doped fiber laser with a Fabry-Perot semiconductor modulator
Zhao D., Chan K.T.
Dept. of Electr. Eng., Chinese Univ. of Hong Kong.

We.P.23 - Multiple-order PMD compensation using a single actively chirped AWG
Parker M., et al.
Photonics Networking Lab., Fujitsu Network Comm. Inc., Richardson, Texas, USA.

We.P.24 - Compact Multi Channel optical power monitor module for DWDM networks using novel glass diffraction grating
Nakama K. et al.
Tsukuba Research Center, Techn.Research Lab.

We.P.25 - 40mW over DFB laser module with integrated wavelength monitor for 50GHz channel
Nasu H., et al.
Yokohama R&D Lab., Furukawa Electric Co.Ltd.

We.P.26 - Ultra-low power and high dynamic range variable optical attenuator array
Lagali N.S., et al.
Telephotronics Inc., Wilmington, USA.

We.P.27 - Study of long-wavelength directly modulated VCSEL transmission using SOA Amplifiers
Chrostowski L., et al.
EECS Dept., Berkeley, California, USA.

We.P.28 - Liquid-crystal optical harmonic equalizers
Chiao J.C., Huang T.
Chorum Techn., Richardson, TX, USA.

We.P.29 - Many positional summator functioning on electromagnetic modes closed in a 1D PC
Legusha S.L., Glushko E.Y.

We.P.30 - First-and higher-order PMD tolerance of carrier-suppressed return-to-zero format with forward error correction
Kisaka Y., et al.
NTT Network Innovation Lab., Kanagawa, Japan.

We.P.31 - 15.6 Gb/s transmission over 1 km of next generation multimode fiber
Pepeljugoski P. et al.
IBM T.J.Watson Research Center, NY, USA.

We.P.32 - 40 GHz optical clock recovery for application in asynchronous networks
Sartorius B., et al.
HHF für Nachrichtentechnik Berlin, Germany.

We.P.33 - 80 x 10 Gbit/s dispersion managed soliton transmission over 3000 km withdrawn of large effective area NZDSF
Harper P., et al.
Marconi-Solstis, Stratford-upon-Avon, UK.

We.P.34 - WDM redundancy to counteract PMD effects in optical systems
Penninckx D.et al.
Alcatel Res. & Innovation, Marcoussis, France.
We.P.35 - Dynamic dispersion slope monitoring of many WDM channels using dispersion-induced RF clock regeneration
Sahin A.B., et al.
EE-Systems Dept., Univ. of Southern California, Los Angeles, USA.

We.P.36 - Impact of gain-flattening-filter ripple in long-haul WDM systems.
Bakhshi B., et al.
TyCom Lab., Eatontown, NJ, USA.

We.P.37 - Intra-bit polarization diversity modulation for PMD mitigation
Pan Z., et al.
Dept. of Electr. Eng. Systems, Univ. of Southern California, Los Angeles, USA.

We.P.38 - Demonstration of in-line monitoring and dynamic broadband compensation of polarization dependent loss
Yan L.S., et al.
Dept. of El. Eng. Systems, Univ. of Southern California, Los Angeles, USA.

We.P.39 - Adaptation of electronic PMD equaliser based on BER estimation derived from FEC decoder.
Sticht K., et al.

We.P.40 - Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal.
Penninckx D., et al.
Alcatel R&I, Marcoussis, France.

We.P.41 - Accurate eye diagrams and error rates using linearization
Holzlöhner R., et al.
Dept. of Computer Science and Electrical Eng., Univ. of Maryland Baltimore County, MD, USA.

We.P.42 - Feasibility of 80 Gb/s transmission over multiple spans of conventional single-mode fiber using highly dispersed pulses
Chen L.R.
Photonic Systems Group, Dept. of E&C Eng., McGill Univ., Montreal, Quebec, Canada.

We.P.43 - 1.25-Gb s⁻¹ bidirectional multimode-fibre data link using dual-purpose vertical-cavity laser and detector
Ingham J.D., et al.
Univ. of Bristol, Centre for Comm. Research & Dept. of E&E Eng., Bristol, UK.

We.P.44 - Optimized teralight TM/reverse teralight ©dispersion-managed link for 40 Gbit/s dense WDM ultra long-haul transmission systems
Alcatel, Conflans Cedex, France.

We.P.45 - Full optimization of 40 Gbit/s black-box optical regenerator for DWDM transoceanic transmissions
Dany B., Brindel P., Leclerc O.
Alcatel Research &Innovation, Marcoussis, France.

We.P.46 - The residual polarization of coherent orthogonal multiplexed data streams
Möller L., et al.
Bell Labs, Lucent Techn., Holmdel NJ, USA.

We.P.47 - A novel FFT-based EDFA supervisory scheme for WDM transmission systems
Chan K., et al.
Dept. of Inf. Eng., Chinese Univ. of Hong-Kong.
We.P.48 - Filter concatenation penalties for 10Gb/s sources suitable for short-reach cost-effective
WDM metropolitan area networks
Tomkos I., et al.
Corning Inc., Somerset, NJ, USA.

We.P.49 - A sub-grouped wavelength conversion switch architecture for scalable and large-capacity
optical cross-connect
Kuroyanagi S., Nishi T.
Fujitsu Laboratories Ltd., Kawasaki, Japan.

We.P.50 - Almost packet loss-free asynchronous, variable-length optical packet switch with WDM
buffering
Kitayama K.I., et al.
Osaka Univ., Suita, Osaka, Japan.

We.P.51 - A novel scalable optical packet compression/decompression scheme
Aleksic S., et al.
Vienna Univ. of Techn., Inst. of Comm. Networks, Austria.

We.P.52 - FLAMINGO: packet-switched IP-over-WDM all-optical MAN
Dey D., et al.
CTIT, Informatica Gebouw, Univ. of Twente, The Netherlands.

We.P.53 - Hybrid access technology applications to the next generation internet (NGI) network extension
Izadpanah H., et al.
HRL Laboratories, Malibu, CA, USA.

We.P.54 - A 2.5Gb/s optical packet receiver for optical packet routing systems using WDM technology
Ishii Y. et al
Network Solution Lab., Yokohama, Japan.