PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SOFT SOIL ENGINEERING

Edited by
Z.J. Shen, K.T. Law, G.Y. Li and B.H. Fellenius

VOLUME 1

Jointly Organized by
Nanjing Hydraulic Research Institute, China
Hohai University, China
and
Ottawa-Carleton Institute for Civil Engineering
Canada

Nanjing, China
May 27-30, 1996

Hohai University Press
Nanjing, China
CONTENTS

Foreword
Organization
Main Papers

COUPLED ANALYSIS OF CONSOLIDATION AND SECONDARY COMPRESSION
J. M. Duncan, J. P. Rajot & Vincent J. Perrone 3

SOME PROBLEMS ON SOFT CLAY ENGINEERING IN CHINA
Rulong Wei .. 28

BACK ANALYSIS OF THE PERFORMANCE OF KANSAI INTERNATIONAL
AIRPORT
Koichi Akai .. 49

PROGRESS IN IMPROVEMENT OF SOFT GROUND BY DYNAMIC
CONSOLIDATION
Yixing Feng .. 64

1. Engineering Behavior of Soft Soils and Basic Theories

PHYSICAL AND CHEMICAL PROPERTIES OF HIGHLY ORGANIC SOIL IN JAPAN
Hiroshi Oikawa, Masaki Tsushima, Shunsuke Sasaki & Masahiro Fukuoka 73

FRACTAL STRUCTURE OF SOILS --A CASE STUDY
Y. F. Xu, Peter Onuselogu & Z. Z. Yin .. 78

MICROSCOPIC RESEARCH ON THE RELATIONSHIP OF ALLOPHANE CONTENTS
TO GEOTECHNICAL PROPERTIES OF LIME-STABILIZED VOLCANIC COHESIVE
SOIL
Ei-Kon So .. 84

THE MECHANISM OF FORMATION OF OVERCONSOLIDATED SOILS IN
SHANGHAI-NANJING EXPRESS WAY
Zhaoxiang Feng .. 90

GEOTECHNICAL PROPERTIES OF SOFT SOILS IN MANGROVE AREA, LAMPUNG
INDONESIA
Wimpie A. N. Aspar .. 96

SOME ENGINEERING BEHAVIOR OF HONG KONG MARINE CLAY
P.K.K. Lee, Y.M. Lam & W.H. Wong .. 102

INFLUENCE OF LOAD INCREMENT RATIO ON CONSOLIDATION BEHAVIOR OF
PEAT
Go Ishikawa & Hiroshi Oikawa .. 108
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFECT OF AGING ON CHARACTERISTICS OF CHALK SLURRIES</td>
<td>114</td>
</tr>
<tr>
<td>R. Razoaki, N.J. Langdon & N. Kageson-Loe</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF SAMPLE QUALITY OF SOFT CLAY</td>
<td>120</td>
</tr>
<tr>
<td>Nianxiang Wang & Rulong Wei</td>
<td></td>
</tr>
<tr>
<td>SAMPLING DISTURBANCE INFLUENCE ON CONSOLIDATION BEHAVIOR OF</td>
<td>126</td>
</tr>
<tr>
<td>NORMALLY CONSOLIDATED CLAY</td>
<td></td>
</tr>
<tr>
<td>Shouhua Yang & Rulong Wei</td>
<td></td>
</tr>
<tr>
<td>EFFECT OF SAMPLE DISTURBANCE ON VOLUMETRIC STRAIN IN OEDOMETER TEST</td>
<td>133</td>
</tr>
<tr>
<td>Takaharu Shogaki & Tsuyoshi Sudho</td>
<td></td>
</tr>
<tr>
<td>COMPARISON BETWEEN UNDISTURBED AND REMOLED MECHANICAL BEHAVIORS FOR NATURAL SOILS</td>
<td>139</td>
</tr>
<tr>
<td>Zhenshun Hong & Katsutada Onitsuka</td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE OF BOREHOLE SEALS IN MARINE CLAY</td>
<td>145</td>
</tr>
<tr>
<td>M. Bozozuk & C. Mirza</td>
<td></td>
</tr>
<tr>
<td>APPROXIMATE ESTIMATION OF HORIZONTAL CONSOLIDATION</td>
<td>151</td>
</tr>
<tr>
<td>CHARACTERISTIC OF SOFT MARINE CLAY</td>
<td></td>
</tr>
<tr>
<td>P.K.K. Lee, Y.M. Lam & Y.B. Lock</td>
<td></td>
</tr>
<tr>
<td>A NEW APPROACH TO EVALUATE UNDRAINED STRENGTH OF CLAYS BY UNCONFINED COMPRESSION TEST WITH SUCTION MEASUREMENT</td>
<td>157</td>
</tr>
<tr>
<td>T. Mitachi, Y. Kudoh & D. Endoh</td>
<td></td>
</tr>
<tr>
<td>LABORATORY STUDY ON THE UNDRAINED SHEAR STRENGTH OF MARINE CLAY</td>
<td>163</td>
</tr>
<tr>
<td>Shuyun Wang, Xiaoyun Gu & Xingeng Tang</td>
<td></td>
</tr>
<tr>
<td>UNDRAINED SHEAR STRENGTH OF CLAYEY SOIL UNDER VARIOUS STRESS AND STATE CONDITIONS</td>
<td>169</td>
</tr>
<tr>
<td>N. Yagi, R. Yatabe & M. Mukaitani</td>
<td></td>
</tr>
<tr>
<td>STRENGTH DEVELOPMENT OF MARINE SOFT SEDIMENTS</td>
<td>175</td>
</tr>
<tr>
<td>M. Fukue & T. Nakamura</td>
<td></td>
</tr>
<tr>
<td>STATIC SHEAR CHARACTERISTICS OF OVERCONSOLIDATED CLAYS</td>
<td>181</td>
</tr>
<tr>
<td>SUBJECTED TO CYCLIC LOADING</td>
<td></td>
</tr>
<tr>
<td>T. Matsui & Y. Nabeshima</td>
<td></td>
</tr>
<tr>
<td>A REGRESSIVE INVERSION METHOD TO DETERMINE PARAMETERS OF SOFT SOIL RHEOLOGY</td>
<td>187</td>
</tr>
<tr>
<td>Hongfa Xu</td>
<td></td>
</tr>
<tr>
<td>A NONLINEAR THEORY OF CONSOLIDATION UNDER TIME-DEPENDENT LOADING</td>
<td>193</td>
</tr>
<tr>
<td>K.H. Xie, B.H. Li & Q.L. Li</td>
<td></td>
</tr>
</tbody>
</table>
THE RESPONSE OF SOFT SOIL TO WAVE LOADING AND MECHANISM OF ITS INSTABILITY
S.L. Yang, W.Q. Shen & R.F. Chang .. 199

BEHAVIOR OF SOFT CLAY UNDER REPEATED LOADING

ONE DIMENSIONAL CONSOLIDATION OF SOFT CLAY UNDER TRAPEZIODAL CYCLIC LOADING

ON THE 1-D LARGE STRAIN CONSOLIDATION THEORY
X.Y. Xie, Q.Y. Pan & G.X. Zeng ... 217

2. Constitutive Relationship and Mathematical Modelling

A SIMPLE CONSTITUTIVE MODEL FOR CEMENTED SOILS IN 3-D STRESSES
De'an Sun & Hajime Matsuoka ... 225

A STRUCTURAL SUCTION MODEL FOR STRUCTURED CLAYS
M.J. Jiang & Z.J. Shen ... 231

A PLASTICITY MODEL FOR CEMENTED CARBONATE SEDIMENTS
M.D. Liu, J.P. Carter & D.W. Airey .. 243

A NEW STRAIN SPACE ELASTO-PLASTIC CONSTITUTIVE MODEL FOR SOILS
Guanghua Yang ... 255

RHEOLOGIC THEORY OF SOFT CLAY AND ITS APPLICATION
Weibing Zhao & Jianyong Shi .. 263

BACK CALCULATED FIELD EFFECT OF VERTICAL DRAIN
Jinchun Chai, D.T. Bergado, Norihiko Miura & Saiichi Sakajo 270

BACK ANALYSIS OF SEDIMENTATION AND SELF-WEIGHT CONSOLIDATION PROPERTIES
Takuo Yamagami & Shinsuke Sakai ... 276

A PROCEDURE IN MODELLING MULTI-LAYER GROUND OF SOFT COHESIVE SOIL FOR FE ANALYSIS
Saiichi Sakajo, Takeshi Kamei & J.C. Chai .. 282

FINITE ELEMENT ANALYSIS TO MODEL TUNNEL CONSTRUCTION
Qun Shi ... 288

A NUMERICAL COMBINATION ANALYSIS OF BIOT’S CONSOLIDATION THEORY WITH STRAIN-SOFTENING ELASTOPLASTIC MODEL
T. Adachi, J. Liu, F. Zhang & A. Koike ... 294

GLOBAL SAFETY OF TWO-DIMENSIONAL GEOTECHNICAL PROBLEMS--A LOW BOUNDARY SOLUTION
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A PRACTICAL METHOD FOR DYNAMIC NONLINEAR ANALYSIS OF PILE FOUNDATIONS</td>
<td>300</td>
</tr>
<tr>
<td>IMPROVEMENT OF SATURATED SAND USING BLASTING TECHNIQUE</td>
<td>308</td>
</tr>
<tr>
<td>EVALUATION OF LATERAL MOVEMENT OF AN ABUTMENT DUE TO EMBANKMENT CONSTRUCTION</td>
<td>315</td>
</tr>
<tr>
<td>MODIFIED BEHAVIOR OF SOFT CLAY IN CLASSICAL THEORIES FOR DEEP EXCAVATION</td>
<td>321</td>
</tr>
<tr>
<td>SETTLEMENT ANALYSIS OF SATURATED SOFT CLAY UNDER LONG-TERM DYNAMIC LOADING</td>
<td>327</td>
</tr>
<tr>
<td>DYNAMIC RELIABILITY ANALYSIS ON PERMANENT DEFORMATION OF SOFT SOIL FOUNDATION</td>
<td>333</td>
</tr>
<tr>
<td>SENSITIVITY ANALYSIS OF LATERALLY LOADED PILES EMBEDDED IN SOFT SOILS</td>
<td>339</td>
</tr>
<tr>
<td>A TRIANGULAR FINITE ELEMENT IN THE STUDY OF FINITE PLATE ON ELASTIC FOUNDATION</td>
<td>345</td>
</tr>
<tr>
<td>A STUDY ON 1-D CONSOLIDATION OF SOILS EXHIBITING RHEOLOGICAL CHARACTERISTICS WITH IMPEDED BOUNDARY</td>
<td>351</td>
</tr>
<tr>
<td>GENERALIZATION OF SELECTIVE AND REDUCED INTEGRATION PROCEDURES IN GEOMECHANICS</td>
<td>357</td>
</tr>
<tr>
<td>STRESS INCREASES IN SOILS AROUND LIME COLUMNS</td>
<td>363</td>
</tr>
<tr>
<td>ANALYTIC SOLUTIONS OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL CONSOLIDATION PROBLEM BY USING THE METHOD OF WEIGHTED RESIDUALS</td>
<td>370</td>
</tr>
<tr>
<td>STRESS INCREASES IN SOILS AROUND LIME COLUMNS</td>
<td>376</td>
</tr>
</tbody>
</table>
INITIAL PORE WATER PRESSURE IN TRANSVERSELY ISOTROPIC SOFT CLAY GROUND UNDER LOADING
J.Z. Xia, K.H. Xie, Q.Y. Pan & G.X. Zeng .. 385
CONSOLIDATION CHARACTERISTICS OF LAYERED SOIL INSTALLED WITH VERTICAL DRAINS
P.K.K. Lee & K.H. Xie ... 391

3. Centrifuge and Other Model Tests

CENTRIFUGE MODEL TESTS OF DREDGED MATERIAL
CF Leung, AH Lau, JC Wong & GP Karunaratne 401
CENTRIFUGE MODELLING OF SAND COMPACTION PILES IN SOFT GROUND
FH Lee, YW Ng & KY Yong ... 407
CENTRIFUGAL MODELLING OF SOFT FOUNDATION TREATMENT OF GUANGGANG RAILWAY STATION
J.C. Du & L.M. Zhang ... 413
USING CENTRIFUGE MODEL TO SIMULATE EMBANKMENT CONSTRUCTION SETTLEMENT
W.M. Zhang & G.M. Xu .. 421
THE APPLICATION OF CENTRIFUGAL MODEL TESTING METHOD TO SOFT FOUNDATION TREATMENT
G.M. Xu .. 427
CENTRIFUGAL MODEL TEST FOR A GRAVITY-TYPE WHARF
J.D. Yi, Z.Y. Cai, G.M. Xu & W.M. Zhang 435
REINFORCED RETAINING STRUCTURES ON SOFT CLAY FOUNDATIONS
Ali Porbaha .. 443
FAILURE MECHANISM OF CLAY DEPOSITS IMPROVED BY SCP AND PILE FOUNDATIONS
Yoichi Watabe, Jiro Takemura & Tsutomu Kimura 449
STABILITY OF REVETMENT ON SOFT CLAY IMPROVED BY SCP
Masaki Kitazume, Shogo Miyajima & Yoshitada Nishida 455
CENTRIFUGE MODELLING FOR EFFECT OF BEDROCK OFFSETS
S.H. Liu, J.C. Dong & Z.Y. Cai .. 461
PILE GROUP CHARACTERISTICS IN SAND ENVIRONMENT
Peter Onuselogu, Z.Z. Yin & Y.F. Xu .. 467
MODELLING TEST RESEARCH ON ARTIFICIAL FREEZING OF SOFT SOIL WITH LIQUID NITROGEN
L.N. Zhu & R.J. Chen ... 474
4. Excavation and Stability of Slopes

STABILITY ANALYSIS OF EXCAVATED GROUND WITH SHEET PILE
Satoru Ohtsuka, Eiji Yamada, Nobuyuki Kawai & Minoru Matsuo

A NUMERICAL STUDY ON 3-D BEHAVIOUR OF EXCAVATION-SUPPORT SYSTEM
KX Liu, KY Yong & FH Lee

EARTH PRESSURE AND DEEP EXCAVATIONS ON SOFT SOIL GROUND
S.H. Zhou

MECHANISM OF ANCHOR IN DEEP EXCAVATION
S.M. He

THE VARIABLE LATERAL PRESSURE COEFFICIENT APPROACH IN RETAINING WALL DESIGN
Ching Dai & Neville J. Morrison

AN ILLUSTRATION OF DEEP FOUNDATION PIT EXCAVATION IN TIANJIN SOFT SOIL AREA
Xun Ma & Siyuan Wang

CASE HISTORY OF A DEEP EXCAVATION IN XIAMEN
Z.P. Guo, J.S. Huang, L.H. Lin & J.N. Huang

BEHAVIOR OF A BRACED EXCAVATION IN HANGZHOU
H.W. Ying, K.H. Xie, Q.Y. Pan & Z.Y. Shi

SOME PROBLEMS CONCERNING RETAINING STRUCTURE IN THE EXCAVATION
Yanxiang Wang & Weiwei Wang

OPTIMAL DESIGN OF AN ENCLOSURE STRUCTURE IN SOFT SOIL EXCAVATION
Y. Yuan & C.F. Lee

ANALYSIS AND TREATMENT OF SLIDE IN DAGAN PING
J.R. Zhang, S.M. Peng, S. Qi, H.N. Ai & G.H. Yin

THREE DIMENSIONAL SLOPE STABILITY ANALYSIS
Y.M. Cheng & Y. Tsui

DETERMINATION OF THE SLIDING DIRECTION IN THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS
Takuo Yamagami & Jingcai Jiang
STABILITY OF THE RED RIVER DIKE ON WEAK FOUNDATION
Nghiem Huu Hanh ... 573
SUMMARIZED CONSIDERATIONS FOR APPLYING GEOTEXTILE TO STABILIZE
MUDSTONE SLOPE
Dave Ta-Teh Chang, Chen-Neng Hsu & Shih-Wei Chen ... 580