Contents

VOLUME ONE
Preface XXI

PART ONE: KEYNOTE LECTURES

1 Where structural steel and concrete meet
 J. W. B. Stark and D. A. Hordijk 1

2 Fastening technique - Current status and future trends
 R. Eligehausen, I. Hofacker and S. Lettow 11

PART TWO: DESIGN

3 Anchoring to concrete: the new ACI approach
 J. E. Breen, E.-M. Eichinger and W. Fuchs (Keynote Lecture) 31

4 Evolution of fastening design methods in Europe
 W. Fuchs (Keynote Lecture) 45

5 Probabilistic calibration of design methods
 R. E. Klingner (Keynote Lecture) 61

6 Current status of post-installed anchor application in Japan
 R. Tanaka (Keynote Lecture) 72

7 Design method for splitting failure mode of fastenings
 J. Asmus and R. Eligehausen 80

8 Behaviour and design of fastenings of shear lugs in concrete
 H. Michler and M. Curbach 90

9 Safety relevant aspects for torque controlled expansion anchors
 H. Gassner and E. Wisser 102

10 Study on standard test methods for post-installed anchors
 Y. Hosokawa, K. Nakano, Y. Oohaga, S. Usami and K. Imai 108

11 Static behavior of anchors under combinations of tension and shear loading
 D. Lotze, R. E. Klingner and H. L. Graves, III 118
<table>
<thead>
<tr>
<th>12</th>
<th>Improved structural model for channel bars with more than two anchors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Kraus, J. Ožbolt and R. Eligehausen</td>
</tr>
<tr>
<td>13</td>
<td>Anchors in low and high strength concrete</td>
</tr>
<tr>
<td></td>
<td>J. Kunz, Y. Yamamoto and M. Berra</td>
</tr>
<tr>
<td>14</td>
<td>Development of common uniform regulations in Europe for the assessment of metal anchors</td>
</tr>
<tr>
<td></td>
<td>K. Laternser</td>
</tr>
<tr>
<td>15</td>
<td>Behavior of multiple-anchor fastenings subjected to combined tension/shear loads and bending moment</td>
</tr>
<tr>
<td></td>
<td>L. Li and R. Eligehausen</td>
</tr>
<tr>
<td>16</td>
<td>Load bearing capacity of torque-controlled expansion anchors</td>
</tr>
<tr>
<td></td>
<td>L. Li</td>
</tr>
<tr>
<td>17</td>
<td>Behaviour and design of anchors close to an edge under torsion</td>
</tr>
<tr>
<td></td>
<td>R. Mallée</td>
</tr>
<tr>
<td>18</td>
<td>Fixings with anchors: concerning relevant base plate thickness</td>
</tr>
<tr>
<td></td>
<td>R. Mallée and F. Burkhardt</td>
</tr>
<tr>
<td>19</td>
<td>Installation verification of mechanical and adhesive anchors</td>
</tr>
<tr>
<td></td>
<td>L. Mattis</td>
</tr>
<tr>
<td>20</td>
<td>Steel capacity of headed studs loaded in shear</td>
</tr>
<tr>
<td></td>
<td>N. S. Anderson and D. F. Meinheit</td>
</tr>
<tr>
<td>21</td>
<td>The analysis of fastener strength using the limit state approach</td>
</tr>
<tr>
<td></td>
<td>J. J. Melcher and M. Karmazínová</td>
</tr>
<tr>
<td>22</td>
<td>Behavior of shear anchors in concrete: statistical analysis and design recommendations</td>
</tr>
<tr>
<td></td>
<td>H. Muratli, R. E. Klingner and H. L. Graves, III</td>
</tr>
<tr>
<td>23</td>
<td>Study on shear transfer of joint steel bar and concrete shear key in concrete connections</td>
</tr>
<tr>
<td></td>
<td>K. Nakano and Y. Matsuzaki</td>
</tr>
<tr>
<td>24</td>
<td>Performance of undercut anchors in comparison to cast-in-place headed studs</td>
</tr>
<tr>
<td></td>
<td>P. Pusill-Wachsmuth</td>
</tr>
</tbody>
</table>
25 Shear anchoring in concrete close to the edge
N. Randl and M. John 251

26 Behavior of tensile anchors in concrete: statistical analysis and design recommendations
M. Shirvani, R. E. Klingner and H. L. Graves, III 261

27 Performance of single anchors near an edge under varying angles of loading
R. E. Wollmershauser, U. Nestler and V. Smith 272

28 The prequalification of anchors in the United States of America: past, present and future
R. E. Wollmershauser 282

29 On the ratio of plate thickness to stud diameter for steel concrete stud shear connectors
H. D. Wright, A. Elbadawy and R. Cairns 290

30 Incorporation of the size effect and other factors in strength design of concrete fastenings, in the context of the CEB Design Guide
V. I. Yagust and D. Z. Yankelevsky 300

PART THREE: DURABILITY/FIRE

31 Corrosion behavior of materials in fixing applications
N. Arnold 313

32 Behaviour of post-installed anchors in case of fire
K. Bergmeister and A. Rieder 320

33 Durability of galvanized, post-installed fasteners to concrete
K. Menzel and B. Hagmayer 329

34 Durability of stainless steel connections with respect to corrosion
U. Nünberger 338

35 Fire resistance of steel anchors in concrete
M. Reick 352

PART FOUR: BONDED ANCHORS

36 Anchoring with bonded fasteners
R. A. Cook and R. C. Konz (Keynote Lecture) 361
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Experimental study on performance of bonded anchors in the low strength reinforced concrete</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>T. Akiyama, Y. Yamamoto, S. Ichihashi and T. Katagiri</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Behavior of grouted anchors</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>R. A. Cook, N. A. Zamora and R. C. Konz</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Long time load-carrying capacity of bonded anchors</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>L. Elfgren, G. Danielsson, I. Holm and G. Söderlind</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Transmission of shear loads with post-installed rebar</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>J. Kunz</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Design of anchorages with bonded anchors under tension load</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>B. Lehr and R. Eligehaus</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Load bearing behavior and design of single adhesive anchors</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>J. Meszaros and R. Eligehaus</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Rebar anchorage in concrete with injection adhesive</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>M. Reuter, T. Greppmeir and F. Münger</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Investigations on bonding behaviour of tie reinforcements in historic masonry</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>M. Raupach, J. Brockmann, A. Domink and M. Schürholz</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Actual trends in chemical fixings: from capsule to injection systems</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>J. Schätzle</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Performance of bonded anchors in dependence of installation conditions, state of cure – Deformation behavior at elevated temperatures</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>G.W. Ehrenstein and A. Tome</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Study on the performance evaluation of the new capsule typed bonded anchor</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>M. Yonetani, A. Fukuoka and Y. Matsuzaki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PART FIVE: SEISMIC BEHAVIOUR</td>
<td></td>
</tr>
</tbody>
</table>

48	Seismic behavior of connections between steel and concrete	479
	J. O. Jirsa (Keynote Lecture)	
49	Tests on connectors for seismic retrofitting of concrete and masonry structures in Mexico	481
	S. M. Alcocer and L. Flores	
50 Design and construction of heavy industrial anchorage for power-plants
P. J. Carrato and W. F. Brittle

51 Dynamic behavior of single and double near-edge anchors loaded in shear
J. Hallowell Gross, R. E. Klingner and H. L. Graves, III

52 Post-installed rebar connections under seismic loading
I. Hofacker and R. Eligehausen

53 An evaluation of tensile capacity of anchor system in nuclear power plants by actual model tests
J.-B. Jang, S.-K. Woo; Y.-P. Suh and J.-R. Lee

54 Structural behavior of SRC Column - RC beam joint under monotonic and cyclic load
S-H. Lee, Y.-K. Ju, S.-C. Chun and D.-Y. Kim

55 Dynamic behavior of tensile anchors to concrete
M. Rodriguez, D. Lotze, J. Hallowell Gross, Y.-g. Zhang, R. E. Klingner and H. L. Graves, III

56 Test methods for seismic qualification of post-installed anchors
J. F. Silva

57 Safety concept for fastenings in nuclear power plants
T. M. Sippel, J. Asmus and R. Eligehausen

58 Experimental study on seismic performance of beam members connected with post-installed anchors
R. Tanaka and K. Oba

59 Shallow shear anchor bolts for structural seismic strengthening of columns with wing wall
Y. Yamamoto, Y. Hattori, T. Koh and M. Kato

60 Seismic response of multiple-anchor connections to concrete
Y.-g. Zhang, R. E. Klingner and H. L. Graves, III
PART SIX: NUMERICAL SIMULATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 Smeared fracture Finite Element analysis of reinforced concrete</td>
<td>609</td>
</tr>
<tr>
<td>structures - Theory and examples</td>
<td></td>
</tr>
<tr>
<td>J. Ožbolt (Keynote Lecture)</td>
<td></td>
</tr>
<tr>
<td>62 Numerical and experimental investigations of the splitting failure</td>
<td>625</td>
</tr>
<tr>
<td>mode of fastenings</td>
<td></td>
</tr>
<tr>
<td>J. Asmus and J. Ožbolt</td>
<td></td>
</tr>
<tr>
<td>63 Three dimensional modeling of an anchorage to concrete using</td>
<td>637</td>
</tr>
<tr>
<td>metal anchor bolts</td>
<td></td>
</tr>
<tr>
<td>H. Boussa, G. Mounajed, B. Mesureur and J.-V. Heck</td>
<td></td>
</tr>
<tr>
<td>64 Influence of bending compressive stresses on the concrete cone</td>
<td>647</td>
</tr>
<tr>
<td>capacity</td>
<td></td>
</tr>
<tr>
<td>M. Bruckner, R. Eligehausen and J. Ožbolt</td>
<td></td>
</tr>
<tr>
<td>65 ATENA - An advanced tool for engineering analysis of connections</td>
<td>658</td>
</tr>
<tr>
<td>V. Červenka, J. Červenka and R. Pukl</td>
<td></td>
</tr>
<tr>
<td>66 A computational model for double-head studs</td>
<td>668</td>
</tr>
<tr>
<td>A. Haufe and E. Ramm</td>
<td></td>
</tr>
<tr>
<td>67 Behavior and design of fastenings with headed anchors at the edge</td>
<td>678</td>
</tr>
<tr>
<td>under arbitrary loading direction</td>
<td></td>
</tr>
<tr>
<td>J. Hofmann, J. Ožbolt and R. Eligehausen</td>
<td></td>
</tr>
<tr>
<td>68 Evaluation of a bridge deck strengthening with shear connectors:</td>
<td>689</td>
</tr>
<tr>
<td>Finite Element analysis and experimental results</td>
<td></td>
</tr>
<tr>
<td>A. J. Leite</td>
<td></td>
</tr>
</tbody>
</table>

VOLUME TWO

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 Numerical analysis of group effect in bonded anchors with different</td>
<td>699</td>
</tr>
<tr>
<td>bond strengths</td>
<td></td>
</tr>
<tr>
<td>Y.-J. Li and R. Eligehausen</td>
<td></td>
</tr>
<tr>
<td>70 Simulation of fastening systems utilizing chemical and mechanical</td>
<td>708</td>
</tr>
<tr>
<td>anchors</td>
<td></td>
</tr>
<tr>
<td>J. Nienstedt, R. Mattner, U. Nestler and C. Song</td>
<td></td>
</tr>
<tr>
<td>71 Headed stud anchor - cyclic loading and creep-cracking interaction</td>
<td>717</td>
</tr>
<tr>
<td>of concrete</td>
<td></td>
</tr>
<tr>
<td>J. Ožbolt, J. Hofmann and R. Eligehausen</td>
<td></td>
</tr>
</tbody>
</table>
72 Numerical investigations of headed studs with inclined shoulder
P. Pivonka, R. Lackner and H. A. Mang

73 Simulating a response of connections
R. Pukl, J. Červenka and V. Červenka

PART SEVEN: APPLICATIONS

74 Non-supported crash barriers – Proof of the concrete resistances according to the concrete-capacity-method
J. Buhler

75 Reconstruction of multi-layer-walls
E. Dereser and J. Buhler

76 Load carrying capacity of fasteners in concrete railway sleepers
H. Thun, S. Utsi, L. Elfgren, P. Nilsson and B. Paulsson

77 Anchorage with headed bars in exterior beam-column joints
J. Hegger and W. Roeser

78 Halfen HDB-S bars as shear reinforcement in slabs and beams
J. Hegger, K. Fröhlich, R. Beutel and W. Roeser

79 Behaviour of fasteners in concrete with coarse recycled concrete and masonry aggregates
D. A. Hordijk and R. van der Pluijm

80 Regarding strength of anchor bolts used for precast concrete curtain wall fasteners
H. Kawamura, T. Otobe and S. Oka

81 New method of reconstruction - Strengthening of old buildings
M. Marjanishvili, T. Zuzadze, D. Ramishvili and A. Lebanidze

82 Fastening in masonry
A. Meyer and T. Pregartner

83 Study on design method of joint panels for hybrid railway rigid-frame bridges
H. Nishida, K. Murata and T. Takayama

84 Tension stiffening model based on bond
M. A. Polak and K. Blackwell
85 Over-cladding of existing concrete buildings using cold formed light steel sections and composite cladding panels
S. O. Popo-Ola, R. M. Lawson and P. J. Sullivan

86 Redundant structures fixed with concrete fasteners
M. Rößle and R. Eligehausen

87 Numerical and experimental analysis of post-installed rebars spliced with cast-in-place rebars
H. A. Spieth, J. Ožbolt, R. Eligehausen and J. Appl

88 Dowel action of titanium bars connecting marble elements
E. Vintzileou and C. Papadopoulos

89 Case study - Application of high strength post-tensioned rods for anchoring aerial tram structures to rock
G. P. Wheatley

PART EIGHT: SPECIAL FASTENERS

90 Behaviour and design of fastenings with concrete screws
J. H. R. Küenzlen and T. M. Sippel

91 Behaviour and design of anchors for lifting and handling in precast concrete elements
D. Lotze

92 Behaviour of plastic anchors in cracked and uncracked concrete
T. Pregartner and R. Eligehausen

PART NINE: BRIDGES

93 Testing of a dowel connection for a bridge with a concrete deck and a sandwich panel truss structure
H. Blontrock, L. Taerwe, A. Nurchi, J. Vantomme, C. De Roover, J. Wastiels and K. Croes

94 A new step forward for composite bridges
The Bras de la Plaine Bridge
E. Barlet, G. Causse and J.-P. Viallon

95 Anchorage of the steel elements to the concrete piers at the specific pipe bridges over a Danube Bay in Budapest
B. Csiki
96 Behavior and design of steel girder-to-concrete column connection for a cantilever-construction highway bridge
L. Huang, H. Hikosaka, M. Shimozono and K. Akehashi

PART TEN: COMPOSITE STRUCTURES

97 Recent developments and chances composite structures
U. Kuhlmann (Keynote Lecture)

98 Design of lying studs with longitudinal shear force
U. Breuninger

99 Studies on the ductility of shear connectors when using high-strength steel and high-strength concrete
J. Hegger, G. Sedlacek, P. Döinghaus and H. Trumpf

100 Experimental investigations on the behaviour of strip shear connectors with powder actuated fasteners
M. Fontana, H. Beck and R. Bärtschi

101 Design concept of nailed shear connections in composite tube columns
G. Hanswille, H. Beck and T. Neubauer

102 An experimental study on shear characteristics of Perfobond strip and its rational strength equations
Y. Ushijima, T. Hosaka, K. Mitsuki, H. Watanabe, Y. Tachibana and H. Hiragi

103 Behavior of lying shear studs in reinforced concrete slabs
U. Kuhlmann and K. Kürschner

104 Composite bridge with compression joint - Connection concrete end slab to steel girder - Finite Element method
M. V. Lammens

105 Perfo-bond connection and tests
S. Poot

106 Development and application of saw-tooth connections for composite structures
J. Schlaich

107 Geometry, behaviour and design of high capacity saw-tooth connections
V. Schmid
108 Composite bridge with compression joints - Connection concrete end slab to steel girder - Dowels divided in groups
D. Tuinstra

PART ELEVEN: FATIGUE

109 The fatigue behaviour of the shear connection in the hogging region of steel and concrete composite continuous beams under realistic loading
H. Bode and A. Leffer

110 Influence of fatigue loads in tension on short cast-in-place anchors in concrete
E. Cadoni

111 A test proposal for fatigue experimental studies on stud shear connectors
N. Gattesco and E. Giuriani

112 Innovative interface systems for steel-girders/concrete-deck connection
M. K. Tadros, S. S. Badie and A. M. Girgis

PART TWELVE: CONNECTIONS

113 Non-linear analysis of steel-concrete composite beams: a Finite Element model
C. Faella, E. Martinelli and E. Nigro

114 Connections between prestressed concrete bridge decks and composite bridge decks – Hybrid construction
D. Jankowski, O. Fischer and M. Matthes

115 Anchorage behavior of 90-degree hooked beam bars in reinforced concrete wall-beam intersections
O. Joh, Y. Goto and A. Kitano

116 Embedded steel bearings instead of concrete nibs
M. R. Kintscher

117 Anchorage zone in a steel-concrete composite slab with unbonded tendons
H. Koukkari

118 Connections for continuous framing in precast concrete structures
G. Krummel
119 Standoff screws as shear connectors for composite trusses: push-out test results and analysis
J. R. U. Mujagic, W. S. Easterling and T. M. Murray

120 Experimental study on a new joint for prestressed concrete composite bridge with steel truss web
K. Furuichi, M. Yamamura, H. Nagumo and K. Yoshida

121 Development and application of embedded connection
M. Sakurada, T. Yoda, K. Ashiduka and T. Ohura

122 Design and construction of a concrete-filled steel tube joint
S. P. Schneider, D. R. Kramer and D. L. Sarkkinen

123 Friction slipping behavior between concrete steel – Aiming the development of bolted friction-slipping joint
T. Yoshioka and M. Ohkubo

PART THIRTEEN: EXPERIMENTAL STUDIES

124 An experimental study on the connection joints between steel girder and reinforced concrete column with various types of embedded load transferring plates
N. Ando, I. Nishimura and K. Kamo

125 Low-cycle fatigue Behaviour of Pull-Push Specimens with Headed Stud Shear Connectors
S. Erlicher, O. S. Bursi and R. Zandonini

126 Static tests on various types of shear connectors for composite structures
H. C. Galjaard and J. C. Walraven

127 Structural monitoring of hybrid specimens at early age using fibre optic sensors
B. Glisic and D. Inaudi

128 Development of innovative composite system - Between steel and concrete members
K. Kitagawa, H. Watanabe, Y. Tachibana, H. Hiragi and A. Kurita

129 An experimental study on the bond-slip relationship between the concrete and steel with stud
K. Konno, A. Farghaly and T. Ueda
130 The behavior of beam-to-box column connection of CFT with air cavity

131 Sheet reinforcement
 O. Matthaei, H.-P. Andrä and N. V. Tue

PART FOURTEEN: SLIM FLOOR STRUCTURES

132 Composite girders of reduced height
 U. Kuhlmann, J. Fries and A. Rieg

133 Innovative development of light steel composites in buildings
 R. M. Lawson, S. O. Popo-Ola and D. N. Varley

134 Intentional and unintentional shear connections in shallow floor composite structures
 M. V. Leskelä

Author Index