Recent Topics on Mathematical Theory of Viscous Incompressible Fluid

Edited by
HIDEO KOZONO (Nagoya University)
YOSHIHIRO SHIBATA (Waseda University)
Contents

On the Local Energy Decay Approach to Some Fluid Flow in an Exterior Domain
Wakako Dan, Takayuki Kobayashi and Yoshihiro Shibata .. 1

Introduction ... 1

The Decay Property of the Stokes Semigroup in the 3-Dimensional Exterior Domain 8
1.1 Main results of the section 1. .. 8
1.2 Preliminaries .. 11
1.3 Resolvent expansions around the origin 15
1.4 Proof of Theorem 1.1.1 (local energy decay) 18
1.5 Proof of Theorem 1.1.2 ($L_q - L_r$ estimate) 20

The Decay Property of the Stokes Semigroup in the 2-Dimensional Exterior Domain 23
2.1 Main results of the section 2 .. 23
2.2 Preliminaries .. 25
2.3 Asymptotic behavior of the resolvent around the origin 28
2.4 Proof of Theorems 2.1.1 and 2.1.2 (local energy decay and $L_q - L_r$ estimate) 33
2.5 Proof of Theorem 2.1.3 ($L_q - L_\infty$ estimate) 35

The Decay Property of the Solutions to the Compressible Navier-Stokes Equation in the 3-Dimensional Exterior Domain 38
3.1 Main results for the linearized equation 38
3.2 Application to the nonlinear problem 42

The Stationary Navier-Stokes Equations in a 3D-Exterior Domain
Reinhard Farwig .. 53
1 Introduction ... 53
2 Homogeneous Sobolev Spaces ... 58
3 An Existence Theorem for Weak Solutions 62
4 The Oseen Equations in \mathbb{R}^n 68
5 Weighted Analysis of the Oseen Equations 73
6 On the Navier-Stokes Equations when $u_\infty \neq 0$ 78
7 Basic Results on the Navier-Stokes Equations when $u_\infty = 0$ 89
8 From D-Solutions to PR-Solutions when $u_\infty = 0$ 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>Stability</td>
<td>229</td>
</tr>
<tr>
<td>0.4</td>
<td>The Cauchy problem</td>
<td>231</td>
</tr>
<tr>
<td>1</td>
<td>Results</td>
<td>232</td>
</tr>
<tr>
<td>1.1</td>
<td>Stationary problem</td>
<td>232</td>
</tr>
<tr>
<td>1.2</td>
<td>Uniqueness of weak solutions</td>
<td>234</td>
</tr>
<tr>
<td>1.3</td>
<td>Stability</td>
<td>234</td>
</tr>
<tr>
<td>1.4</td>
<td>The Cauchy problem</td>
<td>237</td>
</tr>
<tr>
<td>2</td>
<td>Outline of the proof</td>
<td>240</td>
</tr>
<tr>
<td>2.1</td>
<td>Stationary problem</td>
<td>240</td>
</tr>
<tr>
<td>2.2</td>
<td>Uniqueness criterion of the weak solution</td>
<td>244</td>
</tr>
<tr>
<td>2.3</td>
<td>Stability</td>
<td>248</td>
</tr>
<tr>
<td>2.4</td>
<td>Cauchy Problem</td>
<td>258</td>
</tr>
</tbody>
</table>