9th International Symposium
on
Interaction of the Effects of Munitions with Structures

Proceedings
TABLE OF CONTENTS

STRUCTURAL DESIGN

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Fragment Throw Distances from High Explosive Detonations in Masonry Structures</td>
<td>1</td>
</tr>
<tr>
<td>Fairlie, Greg E.; Livingstone, Ian H. G.; Century Dynamics; United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Blast and Impact Resistance of Concrete Panels Reinforced with Externally-Bonded Glass Fibremat</td>
<td>9</td>
</tr>
<tr>
<td>Lok, Tat Seng; Nanyang Technological University; Singapore; Pei, Jin-Song; Columbia University, USA</td>
<td></td>
</tr>
<tr>
<td>Design of Protective Structures Essential for Munitions; Radioactive and Toxic Waste Disposal and Hazardous Materials Management</td>
<td>19</td>
</tr>
<tr>
<td>Mineev, Vladimir; Mineev, A.V.; Dimitrieva, T.A.; Russian Academy of Sciences; Russia</td>
<td></td>
</tr>
<tr>
<td>Development of Protective Walls</td>
<td>23</td>
</tr>
<tr>
<td>Young, Brian R.; Hulton, F.G.; Defence Research Agency Fortifications; United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Effect of Membrane Action on the Response of Steel Fibre Reinforced Concrete Panels Subjected to Air-Blast</td>
<td>31</td>
</tr>
<tr>
<td>Lok, Tat Seng; Xiao, Jia-Run; Nanyang Technological University; Singapore</td>
<td></td>
</tr>
<tr>
<td>Fibre Reinforced High Strength Concrete Beams Subjected to Transient Load</td>
<td>39</td>
</tr>
<tr>
<td>Magnusson, Johann; FOA National Defence Research Org.; Sweden</td>
<td></td>
</tr>
<tr>
<td>Peak Deflection Measurement of Blast Loaded Panels Using Remotely-Mounted Plastic Materials</td>
<td>47</td>
</tr>
<tr>
<td>Pope, Daniel; Young, Brian R.; Hulton, F. G.; Defence Evaluation and Research Agency; United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Scaled Response of Composite Concrete Slabs with Steel Plates to Close Range Blast</td>
<td>55</td>
</tr>
<tr>
<td>Watson, Alan J.; University of Sheffield; Pope, D.J.; Hulton, F.G.; Defence Evaluation and Research Agency; United Kingdom</td>
<td></td>
</tr>
<tr>
<td>The Development of Steel Plate/ Reinforced Concrete Panels to Resist Explosive Attack</td>
<td>63</td>
</tr>
<tr>
<td>Gough, Mike; British Steel; Hulton, F.G.; Defence Evaluation and Research Agency; United Kingdom</td>
<td></td>
</tr>
<tr>
<td>The Limited Analytical Model of Composite Shelter Plate of Steel Plate and Steel Fiber Reinforced Concrete under Contact Detonation</td>
<td>71</td>
</tr>
<tr>
<td>Wang, Mingyang; Qian, Qihu; Deng, Guoqiang; Nanjing Engineering Institute; People's Rep. of China</td>
<td></td>
</tr>
</tbody>
</table>
Simplified Computational Models to Predict Blast Response of Multistorey Buildings
Yankelevsky, David Z.; Karinsky, Y.; National Building Research Institute; Israel

Structural Loading- Bearing - Capacity and Blast Effects

A Numerical Analytical Procedure for the Flexural Failure of R/C Beams Under Blast Loads
Fang, Qin; Liu, Jing-Chun; Zhang, Ya-Dong; Wang, Sheng-Li;
Nanjing Engineering Institute; People's Rep. of China

A Study of Blast Wall Effectiveness Using Small-Scale Experiments and Hydrocode Calculations
Rice, Darren; 89th Civil Engineering Squadron; USA; Neuwald, Peter;
Fraunhofer Institut für Kurzzeitdynamik; Germany

An Analytical/ Semi- Empirical Approach to Get Rapidly the Response of a Concrete Slab to a Detonation
Tournemine, Didier; Rouquand, A.; DGA/DCE, Centre D'Études de Gramat;
Jaros, A.; CS-CISI, Division Aquitaine; France

Analysis of Local Effects on Concrete-Steel Plate Composite Structures under Impulsive Loads
Fang, Qin; Liu, Jing-Chun; Zhang, Ya-Dong; Zhang, Shan-Biao;
Nanjing Engineering Institute; People's Rep. of China

Comparison of Measured and DYNA3D Predicted Responses of Conventional Reinforced and Unreinforced Concrete Masonry Walls Subjected to Uniform Air Blast Loading
Wesevich, James; Lowak, Michael J.; Wilfried Baker Engineering Inc.;
Stanley, Micheal J.; New Mexico Institute of Mining and Technology; USA

Damage Evaluation of the Underground Reinforced Concrete Member Subjected to Explosive Loading
Morishita, Masahiro; Yamaguchi, Hiroshi; Ando, Tomohiro; Ito, Takashi;
Tanaka, Hideaki; Fourth Research Center, Technical R&D Institute,
Japan Defense Agency; Japan

Destruction Curve Concept Applied in Defining the Maximum Safe Load on Blast Valves
Ronkainen, Jyrki; TEMET Oy; Finland

Discrete Fragment Impact Tests: A Performance Comparison Between Real and Surrogate Fragments
Plenge, Benjamin T.; Air Force Research Laboratory; Grosch, Donald J.;
Southwest Research Institute; USA
Explosives with Expanded Load Duration and the Influence on Structure Behaviour during Confined Detonations
Corley, J.; Mayrhofer, Chr.; Thoma, K.; Fraunhofer Institut für Kurzzeitdynamik; Germany

Failure Behavior of Prestressed Reinforced Concrete Beams under High Speed Loading
Ishikawa, Nobutaka; Enrin, Hidenobu; Katsuki, Satoshi; National Defense Academy Dept. of Civil Engineering; Japan

Investigation of Spherical VS Cylindrical Charge Shape Effects on Peak Free-Air Overpressure and Impulse
Zimmerman, Harold D.; Nguyen, H.D.; Hookham, P.A.; Titan Research & Technology; USA

Numerical Simulation of Blast Loaded Reinforced Concrete Slabs
van Doormaal, Ans; Weerheim, J.; TNO Prins Maurits Laboratory; The Netherlands

Protection of Delicate Equipment in Bunkers and Rock Shelters by Use of Nonlinear Wire Rope Elements
Prost, Claude; Socitec International; France; Nordby, Paul; OAN A/S; Norway

Shock Propagation Through a Concrete Plate Subjected to a Bonded Explosive Charge
Rouquand, Alain; DGA/ DCE/ Centre d’Etudes de Gramat; France

Simulation of Single and Multiple Fragments Impacting an RC Slab
Papados, Photios P.; Namburu, Raju; USAE Waterways Experiment Station; USA

Structural Concrete Slabs under Localized Impact
Krauthammer, Theodor; Zineddin, Mohamad; The Pennsylvania State University; USA

The Blast Loading on a 5-Storey Building Resulting from Near-By Explosion
Shafry, D.; Kivity, Y.; RAFAEL Ballistics Center; Gross, A.; Hanina, E.; Home Front Command IDF; Israel

The Direct Measurement of Close-In Explosive Loading
Hulton, Frederick G.; Enstock, Lucy; Defence Evaluation Research Agency; United Kingdom

The Use of the LS 2000-Design Charts for Predictions of Air Blast Loading in Tunnels due to HE-Detonations at the Tunnel Entrance
Binggeli, Eduard; Anet, B.; AC-Laboratorium Spiez; Switzerland
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undex Response Validation by Numerical Simulations and Precision Impact Testing</td>
<td>235</td>
</tr>
<tr>
<td>O’Daniel, James; Krauthammer, Theodor; Koudela, Kevin L.; Strait, Larry H.; The Pennsylvania State University Dept. of Civil Engineering; USA</td>
<td></td>
</tr>
</tbody>
</table>

INTERNAL DETONATIONS

A Comparison of Two Methods for Incorporating Fragment Damage in First Principles Airblast and Fragment Loading of Structures | 243 |
| Levine, Howard S.; Tennant, Darren; Mould, John C. Jr.; Weidlinger Associates Inc.; Lee, Binky; Logicon RDA; Peyton, Steve; Maxwell Technologies; USA | |

Development of an Engineering Model for Inside Detonations in 3-Chamber Systems | 251 |
| Scheklinski-Gluck, Günter; Ernst Mach Institut; Germany | |

Phenomena of Confined Detonations | 259 |
| Mayrhofer, Christoph; Fraunhofer Institut für Kurzzeitdynamik, Ernst- Mach Institut; Germany | |

PENETRATION EFFECTS

An Examination and Reinterpretation of Experimental Data behind Various Empirical Equations for Penetration into Concrete | 267 |
| Teland, Jan Arild; Sjol, Henrik; Norwegian Defence Research Establishment; Norway | |

Extension and Improvement of the NDRC Formula Based on Experiments with 12mm Steel Projectiles Against Concrete Targets | 275 |
| Sjol, Henrik; Teland, Jan Arild; Norwegian Defence Research Establishment; Norway | |

Hard Target Defeat: An Analysis of Reinforced Concrete Perforation Process | 283 |
| Buzaud, Eric; Dynalis; Laurenso, R.; Darrigade, A.; DGA/DCE Centre d’Etudes de Gramat; Belouet, P.; TDA Armaments SAS; Lissayou, C. CEA/CESTA; France | |

High Performance Concrete: A Numerical and Experimental Study | 291 |
| Darrigade, Alain; DGA/DCE/CEG; Buzaud, E.; Dynalis; France | |

High Performance Concrete - Penetration Resistance and Material Development | 299 |
| Markeset, Gro; Langberg, Helge; Norwegian Defence Construction Service; Norway | |
Measurements of Stress in Concrete During Deep Penetration
Gran, James; Moxley R. E.; SRI International; Adley, M.D.; US Army Engineer Waterways Experiment Station; USA

Penetration of Reinforced Concrete by BETA-B-500 - Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes
Riedel, Werner; Thoma, K.; Hiermaier, S.; Schmolinske, E.; Fraunhofer Institut für Kurzzeitdynamik/ Ernst-Mach-Institut; Germany

Phenomenology of Penetrator Engagement Concrete
Martinez, Edward R.; Defence Threat Reduction Agency; USA

Projectile Penetration into High Strength Concrete Slabs
Yankelevsky, David Z.; National Building Research Institute; Israel

Single and Multi-Hit Penetration of Unconfined and Confined Concrete by Small Arms Bullets
Iremonger, M. J.; Royal Military College of Science; United Kingdom

Smoothed Particle Hydrodynamics Simulation of Disk-Shaped Penetrator Impact
Schraml, Stephen; Kimsey, Kent D.; US Army Research Laboratory; USA

Testing of Concrete-Penetrating Bombs from the Inventory of the Former GDR' Armed Forces
Klughardt, Günther; Streitkräfteamt Abt. V Infrastruktur Dezernat 6; Germany

MATERIAL PROPERTIES

A Comparison Between Experimental and Prediction Contact Forces of Confined Concrete Under Impact
Prichard, Sarah J.; Perry, S.H.; Trinity College Dublin; Ireland

Development of High Strength Concrete for Protection Elements
Zimbelmann, Ruprecht K.; University of the Federal Armed Forces Munich; Germany

Expanding Cylinder Test for Practical Composite Dynamic Strength Data
Wentzel, C. M.; TNO Prins Maurits Laboratory; The Netherlands

Experimental and Numerical Studies of Fragment Penetration and Perforation of HPC
Agardh, Lennart; Hansson, Hakan; FOA Defence Research Establishment; Sweden
Load-Displacement Behavior of Expansion Metal Anchors under Dynamic Loading in Cracked Concrete
Schuler, Daniel; Erdin, Beat; Bürkel Baumann Schuler Ingenieure und Planer AG; Hunziker, Peter; AC-Laboratorium; Switzerland

Material Formulations for Concrete / High Rates and High Pressures—Elasticity—Plasticity—Damage
Ruppert, M.; Gebbeken, N.; University of the Federal Armed Forces Munich; Germany

Perforation Studies into MB 50 Concrete Slabs
Buzaud, Eric; Dynalis; Don, D.; DGA/DCA Centre d’Etudes de Gramat; Gary, G.; LMS Ecole Polytechnique; Bailly, P.; Université d’Orléans; France

Quasi-Ductile Penetration Behavior of Brittle Materials
Ernst, H. J.; Hoog, K.; French-German Research Institute of Saint-Louis; France

Shock Wave Interaction with Granular Materials
Ben-Dor, Gabi; Britan, A.; Ben Gurion University of the Negev; Israel

NUMERICAL SIMULATIONS

A New Coupled CFD/ CSD Methodology for Simulating Weapon/ Target Interaction
Baum, Joseph D.; Löhner, Rainald; Pelessone, Daniele; Mestreau, Eric L.; Charman, Charles; Hong, Luo; Science Applications International Corp.; USA

Advanced Eulerian Techniques for the Numerical Simulation of Impact and Penetration using AUTODYN-3D
Cower, Malcolm; Century Dynamics Inc.; USA; Luttwak, Gabi; Rafael; Israel

Centrifugal and Numerical Simulation of a Projectile Penetrating Sand
Morishita, Masahiro; Ando, Tomohiro; Yamaguchi, Hiroshi; Tanaka, Hideaki; Ito, Takashi; Fourth Research Center; Japan Defense Agency; Japan

Element-Free Galerkin Simulations for Concrete Failure in a Dynamic Uniaxial Tension Test
Schwer, Leonard E.; Schwer Engineering & Consulting Services; Belytschko, Ted; Gerlach, Charles; Northwestern University; USA

Modeling Fragment Impact Loads on Reinforced Concrete Walls in Finite Element Structural Dynamics Codes
Lee, C.K.B.; Logicon RDA; Peyton, S.; Maxwell Techn.; Tennant, D.; Weidlinger Ass.; USA

Simulation of Dynamic Material Behaviour Using a Hybrid (Mesh-based/ Meshless) Numerical Method
Sauer, Martin; University of the Federal Armed Forces Munich; Germany
Validation and Verification of Nonlinear Dynamic Models
Hasselman, Timothy K.; Anderson, Mark; ACTA Inc.; Crawford; J.; Karagosian & Case; USA

Vulnerability Model for Occupants of Blast Damaged Buildings
Oswald Charles J.; Baker, W.; Wilfried Baker Engineering; USA

GROUNDSHOCK

A Study on Wave Propagation in Partly Saturated Soil
Wang, Mingyang; Zhao, Yuetang; Yang, Haijie; Qian, Qihu; Xu, Mingli; Nanjing Engineering Institute; People's Rep. of China

A Two-Dimensional Structure-Medium-Interaction (SMI) Model Including the Effect of Transverse Shear for Predicting Damage by Ground Shock Loads on Buried Structures
Sjol, Henrik; Norwegian Defence Research Establishment; Norway

Ground Shock in Rock - Full Scale Tests in Norway
Madshus, Christian; Norwegian Geotechnical Institute; Langberg, Helge; Norwegian Defence Construction Service; Norway

Measurements and Analyses of the Propagation of Seismic Waves due to Blasting
Wittke, Walter; Kiehl, J.R.; WBI Aachen; Germany

Numerical Estimation of Dynamic Response of Underground Chamber due to Explosion in an Adjacent Chamber
Ma, Guowei; Hao Hong; Nanyang Technological University; Zhou Yingxin; Lands and Estate Organization; Singapore

PROTECTIVE DESIGN

Architectural Surety® Applications for Building Response to Dynamic Loads
Matalucci; Rudolph J.; Sandia National Laboratories; USA; Mayrhofer Chr.; Fraunhofer Institut für Kurzzeitedynamik; Germany

Blast Propagation in an Urban Environment
Smith, Peter D.; Rose T.A.; Cranfield University; United Kingdom; Whalen G.P.; Royal Australian Air Force; Australia

Case Study Validation of a PC Based Program for Whole Building Blast Damage
Watson, Alan J.; University of Sheffield; Westaway, R.; Software consultant; Merrifield, R.; Health and Safety Executive; United Kingdom
Development and Implementation of Innovative Cost-Effective Retrofit Protective Measures in Existing Buildings
Eytan; Reuben; Eytan Building Design Ltd.; Israel

Glass Fragment Hazard Mitigation in Terrorist Bombings
Smith, Joseph L.; Applied Research Associates; USA

Response of Glass Curtain Walls to Explosive Effects
Hinman, Eve; Hinman Consulting Engineers; Foadian, Hoss; Hibbitt, Karlsson & Sorensen Inc.; USA

Retrofit Design Procedure for Existing Reinforced Concrete Buildings to Increase their Resistance to Terrorist Bombs
Morrill, Kenneth B.; Malvar, Javier L.; Crawford, John E.; Karagozian & Case Structural Engineers; USA

Strengthening Building Components
Mac Kenzie, James F.; Defence Evaluation and Research Agency; United Kingdom

The Response of Glass Cladding on Large Buildings to Blast Attack and the Use of Multi-Panel Designs
El-Kadi, Abdul Wahab; Kennedy, Leslie J.; Iremonger, Michael J.; Royal Military College of Science; United Kingdom

The Use of Architectural Features to Reduce the Effects of Blast Waves and Fragments on Structures
Mahmoud, Ehab; Hetherington, J.G.; Royal Military College of Science Cranfield University; United Kingdom

BASICS

Application of Efficient Probabilistic Analysis Methods to Vulnerability Assessment of Aboveground and Hardened Targets
Thacker, Ben H.; Southwest Research Institute; Patterson, Bruce C.; Powell, Rodney M.; Air Force Research Laboratory; USA

Comparison of Different Pressure Transducers and Related Numerical Simulations
Dirlewanger, Hans; German Federal Armed Forces Center for Explosives and Special Technologies; Germany

Diagnostic of Momentum Distribution and Damage Contour of Non Spherical High Explosive Charges
Held, Manfred; TDW Gesellschaft für Verteidigungssysteme; Germany
Earth Electric Potential Signals as Diagnostic Tools for High Explosive Structures Testing
Reinke, Robert E.; Leverette, John A.; DTRA/SWP-1; USA

European Blast Resistant Glazing Standards - The Shock Tubes and Range Tests Compared
Johnson, Nicholas F.; Security Facilities Division St. Christoher House; United Kingdom

High Performance Concrete Beams Subjected to Impulse Load
Balazs, Peter; National Defence Research Establishment FOA; Hallgren, Mikael; Scandiaconsult; Sweden

Measured and Computed Pressures in Concrete Targets Subjected to Close-In Detonations
Carl, Dietmar; German Federal Armed Forces Center for Explosives and Special Technologies; Germany

The Applicability of the SDoF Method for Modeling Global Structural Response to the Pressures Produced by Charges at Short Stand-Off Distances
Gott, Michael; Defence Evaluation and Research Agency; Watson, Alan J.; University of Sheffield; United Kingdom