Johannes Grotendorst (Editor)

Modern Methods and Algorithms of Quantum Chemistry

Winterschool, 21 - 25 February 2000
Forschungszentrum Jülich, Germany
Proceedings, Second Edition

organized by
John von Neumann Institute for Computing
in cooperation with
Arbeitsgemeinschaft für Theoretische Chemie

NIC Series Volume 3

ISBN 3-00-005834-6
CONTENTS

Industrial Challenges for Quantum Chemistry
Ansgar Schäfer
1 Introduction 1
2 Application Fields of Quantum Chemistry in Industry 2
3 Unsolved Problems 3
4 Conclusion 5

Ab Initio Treatment of Large Molecules
Reinhart Ahlrichs, Simon Elliott, and Uwe Huniar
1 Introduction 7
2 The Zoo of Methods 8
3 Computer Hardware: Another Zoo 14
4 Calculating some Large Systems 16
5 Outlook 23

Parallel Programming Models, Tools and Performance Analysis
Michael Gerndt
1 Introduction 27
2 Programming Models 30
3 Parallel Debugging 36
4 Performance Analysis 36
5 Summary 43

Basic Numerical Libraries for Parallel Systems
Inge Gutheil
1 Introduction 47
2 Data Distributions 48
3 User-Interfaces 51
4 Performance 54
5 Conclusions 62

Tools for Parallel Quantum Chemistry Software
Thomas Steinke
1 Introduction 67
2 Basic Tasks in Typical Quantum Chemical Calculations 68
3 Parallel Tools in Today’s Production Codes 70
4 The TCGMSG Library 71
5 The Global Array Toolkit 72
6 The Distributed Data Interface Used in GAMESS (US) 82
7 Further Reading 85
8 Summary 85
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Quantum Mechanics/Molecular Mechanics Approaches</td>
<td>285</td>
</tr>
<tr>
<td>Paul Sherwood</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>2 Terminology</td>
<td>285</td>
</tr>
<tr>
<td>3 Overview of QM/MM Schemes</td>
<td>286</td>
</tr>
<tr>
<td>4 The Issue of Conformational Complexity</td>
<td>296</td>
</tr>
<tr>
<td>5 Software Implementation</td>
<td>297</td>
</tr>
<tr>
<td>6 Summary and Outlook</td>
<td>299</td>
</tr>
<tr>
<td>Subspace Methods for Sparse Eigenvalue Problems</td>
<td>307</td>
</tr>
<tr>
<td>Bernhard Steffen</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>307</td>
</tr>
<tr>
<td>2 Eigenvalue Extraction</td>
<td>308</td>
</tr>
<tr>
<td>3 Update Procedures</td>
<td>310</td>
</tr>
<tr>
<td>4 Problems of Implementation and Parallelization</td>
<td>312</td>
</tr>
<tr>
<td>5 Conclusions</td>
<td>313</td>
</tr>
<tr>
<td>Computing Derivatives of Computer Programs</td>
<td>315</td>
</tr>
<tr>
<td>Christian Bischof and Martin Bucker</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>315</td>
</tr>
<tr>
<td>2 Basic Modes of Automatic Differentiation</td>
<td>317</td>
</tr>
<tr>
<td>3 Design of Automatic Differentiation Tools</td>
<td>319</td>
</tr>
<tr>
<td>4 Using Automatic Differentiation Tools</td>
<td>321</td>
</tr>
<tr>
<td>5 Concluding Remarks</td>
<td>325</td>
</tr>
<tr>
<td>Ab Initio Molecular Dynamics: Theory and Implementation</td>
<td>329</td>
</tr>
<tr>
<td>Dominik Marx and Jürg Hutter</td>
<td></td>
</tr>
<tr>
<td>1 Setting the Stage: Why Ab Initio Molecular Dynamics ?</td>
<td>329</td>
</tr>
<tr>
<td>2 Basic Techniques: Theory</td>
<td>333</td>
</tr>
<tr>
<td>3 Basic Techniques: Implementation within the CPMD Code</td>
<td>371</td>
</tr>
<tr>
<td>4 Advanced Techniques: Beyond . . .</td>
<td>420</td>
</tr>
<tr>
<td>5 Applications: From Materials Science to Biochemistry</td>
<td>446</td>
</tr>
</tbody>
</table>
Relativistic Electronic-Structure Calculations for Atoms and Molecules

Markus Reiher and Bernd Hess

1. Qualitative Description of Relativistic Effects 479
2. Fundamentals of Relativistic Quantum Chemistry 480
3. Numerical 4-Component Calculations for Atoms 481
4. Molecular Calculations 491
5. Epilogue 500

Effective Core Potentials

Michael Dolg

1. Introduction 507
2. All-Electron Hamiltonian 512
3. Valence-Only Hamiltonian 515
4. Analytical Form of Pseudopotentials 521
5. Adjustment of Pseudopotentials 523
6. Core Polarization Potentials 527
7. Calibration Studies 528
8. A Few Hints for Practical Calculations 532

Molecular Properties

Jürgen Gauss

1. Introduction 541
2. Molecular Properties as Analytical Derivatives 542
3. Magnetic Properties 559
4. Frequency-Dependent Properties 577
5. Summary 585

Tensors in Electronic Structure Theory: Basic Concepts and Applications to Electron Correlation Models

Martin Head-Gordon, Michael Lee, Paul Maslen, Troy van Voorhis, and Steven Gwaltney

1. Introduction 593
2. Basic Tensor Concepts 595
3. Many-Electron Theory 603
4. Nonorthogonal Functions for Local Electron Correlation 610
5. An Overview of Other Applications 630
6. Conclusions 635