CONTENTS

VOLUME I—PROCESSING
EXTRUSION DIVISION

M2—Interactive Presentations

*New Manufacturing Method for Light Guide of PMMA (607) .. 3302
S. J. Park, Bestner, Inc.
K. H. Yoon, Dankook University
C. Park, Fineoptics, Inc.

*Status of Research on Design for Mechanical Reliability of Injection Molded Plastics Products (611) . . . 3304
R. Koster, Delft University

*Rheological Characterization of the Molecular Weight and Molecular Weight Distribution of Linear Polyethylenes (56) .. 3309
M. Grehlinger, C. L. Rohn, J. Suwardie, Rheometric Scientific, Inc.
S. K. Sikka, Eastman Chemical Co.

*Effects of Chain Extension/Branching on the Viscoelastic Behavior of Styrene-Maleic Anhydride/Polylol Blends (105) .. 3314
G. Bayram, U. Yilmazer, Middle East Technical University
M. Xanthos, New Jersey Institute of Technology

*Effect of Crosslinking on Swelling, Transitions and Mechanical Properties of Poly(N-isopropylacrylamide) Responsive Hydrogels (220) .. 3319
A. Zlatanić, Z. S. Petrović, Pittsburg State University

*Application of Liquid Gas-Assisted Injection Molding to the X-Arm of a Chair (747) 3324
D.-H. Kim, Soonchunhyang University
K. Oh, Cheil Industries Inc.

*Model-Based Predictive Control of a DC Motor for Screw Rotation (396) .. 3328
R. Dubay, B. Pramujati, University of New Brunswick

*Accuracy of Desktop Injection Molding Simulation for Part Design (669) .. 3332
L. G. Reifschneider, Illinois State University

*Simulation, Implementation and Evaluation of the Production of a Gas-Assisted Long Part (23) 3337
N. G. Pantelelis, A. Malikopoulos, A. Kanarachos, National Technical University of Athens
N. Efentakis, Technika Plastika SA

*Morphology Distribution of Injection Molded Polypropylene (651) .. 3342
P. W. Zhu, G. Edward, Monash University

*Development of a Notebook PC Housing by Using MMSH (Momentary Mold Surface Heating) Process (411) .. 3347
D.-H. Kim, Soonchunhyang University
M.-H. Kang, NADA Innovation
Y. H. Chun, Kumho Chemical Inc.

*Predictive Control of Cavity Pressure during Injection Filling (397) ... 3351
R. Dubay, University of New Brunswick

*Documenting Flow Segregation in Geometrically Balanced Runners (670) 3356
L. G. Reifschneider, Illinois State University

*Plastic Media as a Mold/Screw Cleaning Alternative (399) .. 3361
J. M. Todd, Maxi-Blast, Inc.

*Integrated CAE Analysis for Powder Injection Molding: Filling, Packing and Cooling Stages (608) 3365

*Present in a joint session.
*Measurement of Microstructural Variation in Blown Films (606) .. 3369
S. Cherukupalli, R. Jelen, A. A. Ogale, Clemson University

*The Effect of TiO₂ Pigment Particle Size and Masterbatch Rheology on the Dispersion Performance of TiO₂ Pigment within the Polyethylene Blown Film Process (412) .. 3374
G. P. Milligan, M. Leatham, Steve Orr Ltd.
G. M. McNally, W. R. Murphy, The Queen's University of Belfast

*Mass Transfer between a Slender Bubble and a Variable Diffusion Coefficient Liquid in an Extensional Flow (41) ... 3379
M. Favelukis, C. Lin, P. Y. Yeo, National University of Singapore

*Modeling the Melting Process of Polymer Pellets Caused by Friction (91) .. 3383
K. L. Yung, Y. Xu, F. Lau, Polytechnic University of Hong Kong

*Study of Color Change Kinetics during RPVC Extrusion (217) ... 3391
G. K. Ivanov, Panduit Corporation

*Valve Screw Design—A New Concept on Screw Design Optimization (12) ... 3396
P. N. Wang, A-plus Design

M3—TAPPI Exchange

Polylactide, a New Thermoplastic for Extrusion Coating (1024) ... 2
M. Hartmann, N. Whitman, Cargill Dow, LLC

A TrisEC and 3DTRF Approach to Polymer Blend Design (1025) ... 7
W. W. Yau, D. Gillespie, Chevron Chemical Company LLC

The Use of Encapsulation Dies for Processing Linear Polyolefin Resins in Extrusion Coating (1026) 19

The Case against Oxidation as a Primary Factor for Bonding Acid Copolymers to Foil (1027) 25
N. Suzuki, Mitsui-DuPont Polychemicals Co., Ltd.

A New mLLDPE for Extrusion Coating Applications (1029) ... 36
R. W. Halle, ExxonMobil Chemical Company
K. M. Cable, Blue Ridge Paper Products

M23—Die Modeling

The Effect of Layer Stretching on the Onset of ‘Wave’ Interfacial Instabilities in Coextrusion Flows (652) 44
M. Zatloukal, P. Saha, Brno University of Technology
J. Vlcek, Comuplast International, Inc.
C. Tzoganakis, University of Waterloo

The Effect of Wall Slip on the Performance of Flat Extrusion Dies (130) ... 49
W. A. Gifford, Dieflow

Streamline Die Design for Complex Geometries (454) ... 54
D. Beaumier, P. G. Lafleur, C. A. Thibodeau, École Polytechnique de Montréal

Flow Balancing of Profile Extrusion Dies (31) ... 59
J. M. Nóbrega, O. S. Carneiro, Universidade do Minho
F. T. Pinho, Universidade do Porto
P. J. Oliveira, Universidade da Beira Interior

A New Concept in Coextrusion Dies (520) ... 64
R. J. Castillo, Dual Spiral Systems, Inc.

Three-Dimensional Non-Isothermal Numerical Analysis of Multi-Layer Coextrusion (732) 69
R.-Y. Chang, C.-S. Ke, W.-H. Yang, National Tsing-Hua University
W.-L. Yang, D. C. Hsu, CoreTech System Co., Ltd.

Predicting the Cooling Conditions at Blown Film Extrusion Lines by Modeling the Cooling Air Stream (342) ... 74
F. Ohlendorf, J. Hauck, W. Michaeli, Institut für Kunststoffverarbeitung (IKV)

New Technique to Reduce Wall Thickness Tolerances in Pipes (204) ... 79
H. G. Gross, Heinz Gross Kunststoff-Verfahrenstechnik

M24—Film

Numerical Calculation of Stresses in Film Blowing (507) ... 86
V. Sidiropoulos, Z. Wahab, J. VLachopoulos, McMaster University

Structure Development during Film Blowing (381) ... 92
M. D. Bullwinkel, G. A. Campbell, D. H. Rasmussen, C. J. Brancewitz, Clarkson University

*Present in a joint session.
Comparison of the Mechanical Performance of Extruded Blown and Cast Polyolefin Thin Film (446) 96
M. Billham, A. H. Clarke, G. Garrett, G. M. McNally, W. R. Murphy, *The Queen’s University of Belfast*

Bridging the Modulus Gap between LLDPE and HDPE (259) 101
K. L. Williams, *Equistar Chemicals, LP*

The Use of Maleic Anhydride-Containing Concentrates to Effect Adhesion between Polyethylene and Ethylene-Vinyl Alcohol (685) 106
G. W. Kamykowski, *Rohm & Haas Company*

Structure-Property Relationships in HMW-HDPE Blown Films (296) 111
R. K. Krishnaswamy, *Chevron Phillips Chemical Company, LP*

Predictive Model Helps Develop New High-Performance HDPE for Barrier Film Application (580) 116
W. G. Todd, W. R. Podborny, *Equistar Chemicals, LP*

T1—Twin Screw Melting

Plastic Energy Dissipation (PED) A Major Contributor to Melting of Polymers in Polymer Compounding Equipment (832) 124
B. Qian, C. G. Gogos, *Polymer Processing Institute*

The Effect of Three-Lobe, Off-Set Kneading Blocks on the Dispersion of Calcium Carbonate in Polystyrene Resin (311) 129
M. J. Rogers, K. W. Koelling, *The Ohio State University*

A Predictive Melting Model for Polymer Particulates in Co-Rotating Twin Screw Extruders (825) 134
C. G. Gogos, B. Qian, *Polymer Processing Institute*

Comparative Melting Trials in ZSK Extruders (180) 139

Melting Phenomena and Mechanism in Co-Rotating Twin Screw Extruder (671) 145
M. H. Kim, *LG Chemical Ltd.*

T2—Single Screw Modeling

Temperature Rise in a Single Screw Pump-Extruder (380) 152
G. A. Campbell, H. Cheng, C. Wang, M. Bullwinkel,
M. A. te-Riele, *Clarkson University*

Flow Analysis in Single Screw Extruders (177) 157
A. Lawal, *Stevens Institute of Technology*

Modeling of Fluted Mixing Elements (109) 162
P. Samsonkova, *Brno Technical University*

“Turbo-Screw™”, New Screw Design for Foam Extrusion (104) 167

Three-Dimensional Numerical Analysis of the Single Screw Plasticating Extrusion Process (735) 173
R.-Y. Chang, C.-W. Hsu, W.-H. Yang, *National Tsing-Hua University*

T21—Solids Conveying and Grooved Feed

The Effect of a Worn Feed Casing on Plasticating Extrusion (327) 180
M. A. Spalding, K. R. Hughes, J. L. Sugden, P. A. Wagner,
K. S. Hyun, *The Dow Chemical Company*

Simulation and Analyses of the Polymer-Pellet-Flow into the First Section of a Single Screw (276) 185
H. Potente, T. C. Pohl, *University of Paderborn*

Barrier Screws in Helically Grooved Barrels: Operating Characteristics and Implications for Simulation Models (151) 195
D. Schläfl, Y. Zweifel, *NEXTROM Technologies*

Solid Conveying Model for Determining the Throughput for Ultra-Short Single Screw Extruders with Spiral-Groove Cylinder (530) 200
H. Potente, F. Reckert, *University of Paderborn*
W1—Twin Screw

Scaleup of Melt Conveying Parameters in Counter-Rotating Non-Intermeshing Twin Screw Extruders (366) 206
C. G. Hagberg, E. R. Uhl, *NFM Welding Engineers*

In-Line Compounding: Effect of Screw Design on Control Pressure Stability (474) 215
G. S. Donoian, J. P. Christiano, *Davis-Standard Corporation*

Dispersive and Distributive Mixing Characterization in Extrusion Equipment (30) 220
W. Wang, I. M. Zloczower, *Case Western Reserve University*

An Adjustable Pressure Barrel for Counter-Rotating Non-Intermeshing (CRNI) Twin Screw Extruders (367) 225
E. R. Uhl, C. G. Hagberg, B. H. Algayer, *NFM Welding Engineers*

Impact Modification of Nylon 6,6—An Experimental Study (193) 237
P. Elkouss, R. Mudalalame, Y. Huang, K. Broadwater, D. Bigio, *University of Maryland at College Park*

W2—Single Screw

Dynamic Torque of a Single Screw Extruder (113) 244
S. J. Derezinski, *Eastman Kodak Company*

Screw Cooling Effects in Single Screw Extruders (542) 257

An Experimental Comparison of the Improved Mixing Obtained from a New Barrier Screw Design (526) 262
K. R. Slusarz, M. R. Thompson, J. P. Christiano, *Davis-Standard Corporation*

Mechanical Mixing in Pin Screw Extruders: Experimental and Numerical Analysis (762) 267
Th. Avalosse, Y. Rubin, *POLYFLOW s.a.*
L. Epinat, E. Slachmuylders, *Manufacture Francaise des Pneumatiques MICHELIN*

W16—Student

Computer Simulation of Small Molecules Permeation through Polymer Membranes (1008) 278
J. G. Kopchick, J. E. Choffel, *Pennsylvania State University at Erie, The Behrend College*

The Effects of Directional Molecular Orientation on Tensile Stress and Elongation of Polypropylene Film (982) 282
L. W. Mellinger, *Pennsylvania College of Technology*

Optimization of the Pultrusion Process Using Thermodynamic Analysis (988) 286
M. J. Heidecker, *Pennsylvania State University at Erie, The Behrend College*

Nanocomposite Polymer Film Technology (1057) 292
S. Bonner, *Elizabeth City State University*
D. Sabandith, *University of Louisiana at Lafayette*
C. Swannack, *Clemson University*
W. Zhou, *SC Governor’s School for Science and Mathematics*

W21—Twin Screw and Reactive Extrusion

Free Radical Grafting of Maleic Anhydride on Polypropylene in the Presence of Supercritical Carbon Dioxide (926) 298
B. Dorsch, *Polycon Industries*
C. Tzoganakis, *University of Waterloo*

Chain Extension of PA-6 and PA-6/66 Copolymer via Reactive Extrusion with Triscaprolactamyl Phosphite (TCP) (475) 303
M. K. Akkapeddi, C. Brown, B. Vanbuskirk, *Honeywell*

Viscosity Regulation for Polymer Extruders (190) 308
G. C. Walsh, D. Bigio, J. Gao, P. Elkouss, *University of Maryland*

The Influence of Screw Design on the Stability of a Reactive Twin-Screw Extrusion Process (53) 313
M. J. H. Bulters, P. H. M. Elemans, *DSM Research*

A Physics Based Approach to Determining Filled Volumes within a Corotating Twin Screw Extruder (168) 318
P. Elkouss, D. Bigio, G. Walsh, *University of Maryland*
A Physical-Mathematical Model for the Description of the Process Behavior of Mixing Elements (144) .. 323
H. Potente, K. Kretschmer, University of Paderborn
J. Flecke, Bayer AG

Mixing Behavior of a Model Miscible Binary Polymer System Having Extremely Low Viscosity Ratio (775) 328
P. T. Shea, R. D. Pietruski, C.-K. Shih, D. A. Denelsbeck,
E. I. du Pont de Nemours & Co., Inc.

Powerful Gearboxes for Plastics Extrusion Especially in the US Market—A Market Study (1048) 333
R. Doeberreiner, F.-M. Funk, Thyssen Henschel Power Transmission Technology

TH1—General Extrusion

Non-Newtonian Flow and Debris Deposition in an Extrusion Filter Medium (179) .. 340
B. Seyfzadeh, D. A. Zumbrunnen, Clemson University
R. A. Ross, The DuPont Company

Process Fingerprints for Compounding of Polymer Blends—An Industrial Prospective (636) 345

Cooling of Coated Cable (188) ... 349
L. Placek, Brno Technical University
J. Vlcek, Comuplast International, a.s.

Microporous Polyolefin Film for Battery Separator (810) 354
J.-H. Oh, University of Pittsburgh

Statistical Process Control Applied to the Extrusion Process (248) .. 359
P. D. Coates, R. M. Rose, M. A. Barghash, University of Bradford

A Study on the Processability of Polycarbonate in Solids Conveying Zone (501) ... 364
Y.-C. Ahn, H.-J. Kim, Kyungnam University

Design of Extrusion Screws Using an Optimisation Approach (34) .. 369
A. Gaspar-Cunha, J. A. Covas, University of Minho

Physical Modeling of Elastomer Extrusion Using the Viscoplasticity Method (813) .. 376
D. C. Angstadt, W. Z. Misiolek, Lehigh University

Effect of Die Geometry on the Orientation of the Velocity Field during Bi-Layer Extrusion with a Conical Extruder (55) 381
D. Schlaffli, Nextrom S.A.

An Experimental Study of the Flow of an Encapsulated Polymer Melt through a Unique Blown Film Die (1023) 386
J. Dooley, S. Jenkins, J. Naumovitz, The Dow Chemical Company

Extrusion of Polymer Melts under Intensive Shear-Thinning Inducing Lower Pressure and Temperature Requirements (481) 391
J. P. Ibar, EKNET Research

Rheology of Polytetrafluoroethylene as Related to Paste Extrusion (57) .. 396
A. B. Ariawan, S. G. Hatzikiriakos, University of British Columbia
S. Ebnesajjad, E. I. du Pont de Nemours & Co., Inc.

Polyethylene Die Deposit—Measurement, Formation Mechanism and Routes to Reduction (37) .. 401
C. K. Chai, BP Chemicals s.n.c.
G. Adams, J. Frame, BP Chemicals

INJECTION MOLDING DIVISION

M2—Interactive Presentations

•New Manufacturing Method for Light Guide of PMMA (607) 3302
S. J. Park, Bestner, Inc.
K. H. Yoon, Dankook University
C. Park, Fineoptics, Inc.

*Present in a joint session.
Status of Research on Design for Mechanical Reliability of Injection Molded Plastics Products (611)
R. Koster, Delft University

Rheological Characterization of the Molecular Weight and Molecular Weight Distribution of Linear Polyethylenes (56)
M. Grehlinger, C. L. Rohn, J. Suwardie, Rheometric Scientific, Inc.
S. K. Sikka, Eastman Chemical Co.

Effects of Chain Extension/Branching on the Viscoelastic Behavior of Styrene-Maleic Anhydride/Polyol Blends (105)
G. Bayram, U. Yilmazer, Middle East Technical University
M. Xanthos, New Jersey Institute of Technology

Effect of Crosslinking on Swelling, Transitions and Mechanical Properties of Poly(N-isopropylacrylamide) Responsive Hydrogels (220)
A. Zlatanić, Z. S. Petrović, Pittsburg State University

Application of Liquid Gas-Assisted Injection Molding to the X-Arm of a Chair (747)
D.-H. Kim, Soonchunhyang University
K. Oh, Cheil Industries Inc.

Model-Based Predictive Control of a DC Motor for Screw Rotation (396)
R. Dubay, B. Pramujati, University of New Brunswick

Accuracy of Desktop Injection Molding Simulation for Part Design (669)
L. G. Reifschneider, Illinois State University

Simulation, Implementation and Evaluation of the Production of a Gas-Assisted Long Part (23)
N. G. Pantelelis, A. Malikopoulos, A. Kanarachos, National Technical University of Athens
N. Efentakis, Technika Plastika SA

Morphology Distribution of Injection Molded Polypropylene (651)
P. W. Zhu, G. Edward, Monash University

Development of a Notebook PC Housing by Using MMSH (Momentary Mold Surface Heating) Process (411)
D.-H. Kim, Soonchunhyang University
M.-H. Kang, NADA Innovation
Y. H. Chun, Kumho Chemical Inc.

Predictive Control of Cavity Pressure during Injection Filling (397)
R. Dubay, University of New Brunswick

Documenting Flow Segregation in Geometrically Balanced Runners (670)
L. G. Reifschneider, Illinois State University

Plastic Media as a Mold/Screw Cleaning Alternative (399)
J. M. Todd, Maxi-Blast, Inc.

Integrated CAE Analysis for Powder Injection Molding: Filling, Packing and Cooling Stages (608)

Measurement of Microstructural Variation in Blown Films (606)
S. Cherukupalli, R. Jelen, A. A. Ogale, Clemson University

The Effect of TiO₂ Pigment Particle Size and Masterbatch Rheology on the Dispersion Performance of TiO₂ Pigment within the Polyethylene Blown Film Process (412)
G. P. Milligan, M. Leathem, Steve Orr Ltd.
G. M. McNally, W. R. Murphy, The Queen's University of Belfast

Mass Transfer between a Slender Bubble and a Variable Diffusion Coefficient Liquid in an Extensional Flow (41)
M. Favelukis, C. Lin, P. Y. Yeo, National University of Singapore

Modeling the Melting Process of Polymer Pellets Caused by Friction (91)
K. L. Yung, Y. Xu, F. Lau, Polytechnic University of Hong Kong

Study of Color Change Kinetics during RPVC Extrusion (217)
G. K. Ivanov, Panduit Corporation

Valve Screw Design—A New Concept on Screw Design Optimization (12)
P. N. Wang, A-plus Design

M4—General 1

Large Part Injection Molding Product Optimization (721)
T. J. Schwab, D. L. Wise, J. D. Goudelock, Equistar Chemicals
B. J. Hughes, University of Cincinnati

*Present in a joint session.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Predictive Control of Injection Molding (209)</td>
<td>530</td>
</tr>
<tr>
<td>P. Ambady, D. Kazmer, University of Massachusetts, Amherst</td>
<td></td>
</tr>
<tr>
<td>The Development of Geometry and Polymer-Independent Product Quality Models Based on Injection Molding Cavity Pressure (700)</td>
<td>537</td>
</tr>
<tr>
<td>D. C. Angstadt, J. P. Coulter, Lehigh University</td>
<td></td>
</tr>
<tr>
<td>Improved Part Quality Using Cavity Pressure Switchover (306)</td>
<td>543</td>
</tr>
<tr>
<td>B. Sheth, C. M. F. Barry, N. R. Schott, University of Massachusetts, Lowell</td>
<td></td>
</tr>
<tr>
<td>R. D. Higdon, B. Davison, Dynisco Instruments</td>
<td></td>
</tr>
<tr>
<td>The Effect of Processing Variables on the Quality of Injection Molded Foamed Parts (377)</td>
<td>548</td>
</tr>
<tr>
<td>T. A. Duever, M. T. Tripp, C. Tzoganakis, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>Automated Injection Molding Machine Optimization (533)</td>
<td>553</td>
</tr>
<tr>
<td>R. G. Speight, L. Reisinger, Moldflow Pty. Ltd.</td>
<td></td>
</tr>
<tr>
<td>C. Lee, M. Spence, Birkbys Plastics Ltd.</td>
<td></td>
</tr>
<tr>
<td>Property Separation Based on Inversion of Micro-Mechanics (1061)</td>
<td>560</td>
</tr>
<tr>
<td>Z. Zhao, X. Jin, Moldflow Corporation</td>
<td></td>
</tr>
<tr>
<td>One-Step Blending and Molding of Glass Fiber Filled Polypropylene—Physical Property Measurements (181)</td>
<td>563</td>
</tr>
<tr>
<td>R. Mudalamane, D. Bigio, University of Maryland</td>
<td></td>
</tr>
<tr>
<td>T. Hirano, Aisin-Seiki Co., Ltd.</td>
<td></td>
</tr>
<tr>
<td>S. Zerafati, AtoFina</td>
<td></td>
</tr>
<tr>
<td>The Effect of Pigment Type and Concentration on the Mechanical Performance of Injection Moulded Metallocene Catalysed Polyethylenes (505)</td>
<td>567</td>
</tr>
<tr>
<td>M. J. Murphy, G. M. McNally, M. P. Kearns, The Queen's University of Belfast</td>
<td></td>
</tr>
<tr>
<td>In Line Compounding/Injection Molding with a Discontinuously Operating Twin Screw Extruder (907)</td>
<td>573</td>
</tr>
<tr>
<td>J. Billiet, T. Leng, Husky Injection Molding Systems S.A.</td>
<td></td>
</tr>
<tr>
<td>K. Kapfer, D. Schwendemann, Werner & Pfleiderer Corporation</td>
<td></td>
</tr>
<tr>
<td>Hybrid Thermoplastic-Thermoset Molding (40)</td>
<td>577</td>
</tr>
<tr>
<td>R. Wimberger-Friedl, G. N. Mol, R. N. J. Stegen, J. G. de Bruin, Philips Research Laboratories</td>
<td></td>
</tr>
<tr>
<td>P. de Peinder, Philips Center for Technology</td>
<td></td>
</tr>
<tr>
<td>Comparative Study of Structure and Property of Ziegler-Natta and Metallocene Based Linear Low Density Polyethylene in Injection Moldings (189)</td>
<td>582</td>
</tr>
<tr>
<td>Y. Ruksakulpiwat, Suranaree University of Technology</td>
<td></td>
</tr>
<tr>
<td>Numerical Simulation of Injection Molding of Semicrystalline Thermoplastics (633)</td>
<td>587</td>
</tr>
<tr>
<td>J. Guo, Polymer Processing Institute</td>
<td></td>
</tr>
<tr>
<td>K. A. Narh, New Jersey Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Evaluation of New Insulation Materials for Heater Bands (819)</td>
<td>594</td>
</tr>
<tr>
<td>A. Agarwal, C. M. F. Barry, N. R. Schott, University of Massachusetts, Lowell</td>
<td></td>
</tr>
<tr>
<td>An Assessment of Dynamic Feed Control in Modular Tooling (795)</td>
<td>599</td>
</tr>
<tr>
<td>J. F. Reilly, M. Doyle, Dynisco HotRunners</td>
<td></td>
</tr>
<tr>
<td>D. O. Kazmer, University of Massachusetts, Amherst</td>
<td></td>
</tr>
<tr>
<td>Study of Flow Marks during Thin-Wall Injection Molding (725)</td>
<td>604</td>
</tr>
<tr>
<td>G. Xu, K. W. Koelling, The Ohio State University</td>
<td></td>
</tr>
<tr>
<td>Efficient Injection Molding Workcells: The Case for Remote Integration (863)</td>
<td>608</td>
</tr>
<tr>
<td>B. Catoen, Husky Injection Molding Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Morphology Distribution of Injection Molded Polypropylene and Its Dependence on Processing History (690)</td>
<td>613</td>
</tr>
<tr>
<td>G. Liu, G. Edward, Monash University</td>
<td></td>
</tr>
<tr>
<td>What Position on the Viscosity Curve Is the Most Repeatable with Respect to End of Fill Cavity PSI? (465)</td>
<td>620</td>
</tr>
<tr>
<td>S. Mertes, General Polymers</td>
<td></td>
</tr>
<tr>
<td>C. Carlson, Thermotech</td>
<td></td>
</tr>
<tr>
<td>J. Bozzelli, IM Solutions</td>
<td></td>
</tr>
<tr>
<td>M. Groleau, RJG Associates</td>
<td></td>
</tr>
</tbody>
</table>

xvi / ANTEC 2001
The Effect of Cavity Pressure Transducers on the Overall Performance of a Multi-Cavity Hot Runner Injection Mold (659) C. N. Guimond, R. Simas, Jr., Allegiance Healthcare Corporation

Micro Assembly Injection Molding—Mold and Processing Technology (336) C. Ziegmann, W. Michaeli, Institut für Kunststoffverarbeitung (IKV)

Injection Nozzle Ultrasound Measurements (241) E. C. Brown, A. J. Dawson, P. D. Coates, University of Bradford

Introducing New Injection Molding Technologies into Small and Medium-Sized Enterprises (331) A. Franz, W. Michaeli, Institut für Kunststoffverarbeitung (IKV)

W4—Analysis

Process Window Identification for a Very Tight-Tolerance Injection Molded Part with Multiple Performance Criteria (923) H. H. Demirci, Tyco Electronics

Calculation of Melting Performance of Injection Molding Screws by an Easily Applicable Model (58) N. S. Rao, Plastics Solutions International

The Developing Behavior of Core Material and Breakthrough Phenomenon in Sandwich Injection Molding (691) D. Watanabe, H. Hamada, Kyoto Institute of Technology

A Novel Three-Dimensional Analysis of Polymer Injection Molding (740) R.-Y. Chang, W.-H. Yang, National Tsing-Hua University

Structure Performance of Thin-Wall Injection Molded Parts (77) C. T. Chang, R. C. Luo, Chung Cheng University

W5—CAE/Sim 1

3D Solid Brick Element Injection Molding Simulation—A Time Effective Solution (44) A. Bernhardt, Plastics & Computer, Inc.

Analysis of Internal Structure of Injection-Molded Parts Based on a Three-Dimensional Simulation Software (343) S. Hoffmann, W. Michaeli, Institute for Plastics Processing (IKV)

Rational Integration of Magnetizable Polymers for Sensor Applications (164) D. Drummer, G. W. Ehrenstein, Lehrstuhl für Kunststofftechnik

W23—Joint PD3

*Injection Moulding Machine Performance Inter-Comparisons (238) A. L. Kelly, M. Woodhead, P. D. Coates, University of Bradford

*Development of Rapid Heating and Cooling Mold Inserts Comprising a Heating Layer, an Insulation Layer and a Substrate (701) D. Yao, M. Chen, B. Kim, University of Massachusetts, Amherst

*Understanding the Source of Reduced Mechanical Properties in Reinforced Molded Products (523) J. S. Trahan, K. Hayden, P. Engelmann, Western Michigan University

*Molding Cracks Prediction of Thin-Wall Injection Molded Part by CAE Simulation (170) S. Cha, F. Lai, University of Massachusetts, Lowell

*Present in a joint session.
New Solidification Models for the Simulation of the Injection Molding Process (592) 720
M. Moneke, J. Amberg, M. Bastian, I. Alig, Technical University of Darmstadt

Accuracy of Filling Analysis Program (165) 726
K. Ainoya, Kogakuin University
O. Amano, Amano Molding Laboratory, Ltd.

Full 3-D Prediction of Warpage of Injection Moulded Parts (279) 736
Y. Inoue, K. Imai, M. Takahara, Y. Murayama, T. Matsuoka, Toyota Central R&D Labs., Inc.
K. Shinoda, Y. Mori, Toyota System Research, Inc.

Three-Dimensional Simulation of Injection-Compression Molding of a Compact Disc (736) 741
R.-Y. Chang, W.-Y. Chang, W.-H. Yang, National Tsing-Hua University
W.-L. Yang, D. C. Hsu, CoreTech System Co., Ltd.

Numerical Simulation of Co-Injection Molding (369) 746
J. Wang, Pou Chen Group/Pou Yuen Technology

Optimization of Process Conditions in Gas-Assisted Injection Molding (666) 754
M. Chen, D. Yao, B. Kim, University of Massachusetts, Amherst

The Effect of Liquid Cooling of Gas Channel in the Gas-Assisted Injection Molding Process: Overview (169) 759
J. S. Lee, S. Cha, F. Lai, University of Massachusetts, Lowell

Gas Assisted Injection Moulding: 3D Finite Element Modelling Using a Pseudo Concentration Method and Experimental Studies (245) 764
L. Johnson, P. Olley, P. D. Coates, University of Bradford

Gas-Assisted Rubber Injection Molding (338) 769
H. Wehr, E. Haberstroh, Institut für Kunststoffverarbeitung (IKV)

Injection Molding Unfilled and Filled Polymers with Titanates and Zirconates—2001 (733) 774
S. J. Monte, Kenrich Petrochemicals, Inc.

Effects of Material and Process Parameters on the Degree of Groove Replication in DVD Disks (153) 780
W. C. Bushko, I. Dris, A. Avagliano, GE Corporate Research and Development

Experimental and Numerical Analysis of Thin-Wall Injection Molding with Micro-Features (718) 785
L. Yu, C. G. Koh, K. W. Koelling, L. J. Lee, M. J. Madou, The Ohio State University

Controlling Injection Phase/Packing Phase Switchover Using an Ultrasonic Sensor (949) 790
R. Edwards, C. L. Thomas, University of Utah
R. Peterson, 3M

Estimation of Elongational Viscosity of Polymers for Accurate Prediction of Juncture Losses in Injection Molding (711) 794
M. Gupta, Michigan Technological University

The Effect of Injection Moulding Processing Conditions and α-Olefin Co-Monomer Type on the Performance of Metallocene Catalysed Polyethylenes (682) 799
S. Walker, G. M. McNally, P. J. Martin, M. Murphy, The Queen’s University of Belfast

Non-Conventional Processing of Short Fibre Reinforced Composites (198) 804
R. A. Sousa, R. L. Reis, A. M. Cunha, University of Minho
M. J. Bevis, Brunel University

Modelling of the Effect of Slip in Plug-Assisted Thermoforming (94) 810
D. Laroche, National Research Council of Canada
P. Collins, P. Martin, The Queen’s University of Belfast

Robust Simulation for the Heating Stage in Thermoforming (114) 815
A. Yousefi, A. Bendada, R. DiRaddo, National Research Council of Canada

Experimental Investigation of Slip in Plug-Assisted Thermoforming (630) 820
P. Collins, P. Martin, E. Harkin-Jones, The Queen’s University of Belfast
D. Laroche, National Research Council of Canada
MOLD MAKING/MOLD DESIGN DIVISION

T10—Advancements in Mold Design

New Software Applications Bring Power and Compatibility to the Toolmaking Process (772) 918
D. Marinac, Cimatron Technologies

Integrated Design Environment Enhancing Concurrent Engineering Approach in Plastic Injection Molds Design (167) ... 922
A. Pipino, E. Indino, CRF
A. Franz, M. Thornagel, IKV
R. Curado, Distrim2

Prediction of Ejection Forces in Tubular Moldings in Amorphous Polymers (26) 927
A. J. Pontes, R. Pantani, G. Titomanlio, Universidade do Minho
A. S. Pouzada, Università di Salerno

Controlling Balanced Molding through New Hot Runner Manifold Designs (901) 932
J. P. Beaumont, K. Boell, Beaumont Runner Technologies, Inc./Pennsylvania State University at Erie, The Behrend College

Automatic Design for Parting Line on Injection Mold (428) ... 937
H. Koresawa, M. Sakashita, H. Suzuki, Kyushu Institute of Technology

T29—Advancements in Mold Design and Joint Session Advancements in Rapid Tooling/Rapid Prototyping

*Rapid Tooling and Plastics—Where the RT Industry Stands in 2001 on Better Alternative Tooling Methods (71) 944
B. J. Arnold-Feret, Prototyping and Rapid Tooling Services

*The Selection of Mould Design Variables in Direct Stereolithography Injection Mould Tooling (107) 949
R. A. Harris, P. M. Dickens, De Montfort University

*Optimization of Process Parameters in Curing of Epoxy Resin Using Argon-Ion Laser (776) 954
K. A. Jagadeesh, M. Sivakumar, Y. Srihari, P.S.G. College of Technology

*CD Case Design Using a Simulation Software for Injection Molding Processing (786) 959
R. A. Morales, A. M. Marin, J. L. Carao, A. M. Alvizu, Universidad Simón Bolívar

*Effect of Layer Orientation on the Mechanical Properties of FDM Produced ABS Test Specimens (726) 964
N. L. Hoekstra, J. L. Newcomer, Western Washington University
B. P. Kraft, Nypro, Inc.

*Evaluation of Thermal Environment in Plastic Injection Mold (941) ... 969
F. Gao, H. Koresawa, H. Narahara, H. Suzuki, Kyushu Institute of Technology

W11—Advancements in Tooling Materials—And New Marketplaces

Injection Molding of Metal—Updating a New Market for Mold Builders (292) 976
F. T. Gerson, F. T. Gerson Limited

Resistance to Erosive Wear by Copper Alloy Mold Components (493) .. 981
K. Hayden, P. Engelmann, P. Guichelaar, Western Michigan University
R. Dealey, Dealey’s Mold Engineering
M. Monfore, Johnson Controls Inc.

Comparison of Various Hard Coatings to Protect Copper Mold Components from Erosive Wear (494) 986
P. Engelmann, K. Hayden, P. Guichelaar, Western Michigan University
M. Monfore, Johnson Controls Inc.
R. Dealey, Dealey’s Mold Engineering

APPLIED RHEOLOGY DIVISION

M20—Theory and Simulation of Rheological Flow

Development of Constitutive Equations for Solid Phase Deformation of Polymers with Time-Varying Temperature (237) .. 992
P. Caton-Rose, J. Sweeney, A. S. Wood, G. F. Rosala, P. D. Coates, University of Bradford

Using Truncated Relaxation Spectra in the Simulation of Viscoelastic Flows (703) 997
M.-C. Heuzey, École Polytechnique de Montréal
P. Wood-Adams, McGill University
A. Fortin, Université Laval

*Present in a joint session.
Prediction of Transient Material Functions of PP Resins Using the Multi-Mode PTT Molecular Network Model (506) .. 1002
J. B. Rios, R. M. Martinez, ITESM Campus Monterrey

Theoretical Validation of Long Chain Branching Quantification Technique for Polyethylene (640) 1007
C. He, S. Costeux, P. Wood-Adams, McGill University

Melt Flow Simulation and Measurement of Extensional Viscosity in Planar Hyperbolic Dies (243) 1012
P. Olley, M. T. Martyn, R. Spares, P. D. Coates University of Bradford
D. Groves, University of Leeds

M40—Supercritical Fluid Rheology and Entrance Effects

Plasticization with Carbon Dioxide to Facilitate Melt Spinning of High Acrylonitrile Content Materials (175) .. 1018
M. J. Bortner, D. L. Godshall, D. G. Baird, P. Rangarajan, Virginia Polytechnic Institute and State University

Measurement of Entrance Pressure Drop of Polystyrene/Supercritical CO2 Solutions (261) 1022
A. Xue, C. Tzoganakis, University of Waterloo

Supercritical Fluid Assisted Polymer Processing (867) 1027
S. O. Matthews, P. R. Hornsby, Brunel University

Instabilities in Startup Flows of Polyolefin Melts in Axisymmetric Contraction Geometries (233) 1031
M. T. Martyn, R. Spares, T. Gough, P. D. Coates, University of Bradford

Extensional Flow Properties from Entrance Pressure Measurements Using Zero Length Die versus Bagley Correction (196) 1036
J. Sunder, A. Goettfert, Goettfert

The Effect of Die Entry Flow on the Rheology of Linear Polymers (376) ... 1042
J. R. Barone, Polymer Diagnostics, Inc.

On the Use of Rotational Rheometry for Quality Control (610) .. 1047
N. Mekhilef, D. S. C. Lee, F. Dion, ATOFINA Chemicals, Inc.

Flow Instabilities of Linear Polyethylenes in Capillary Experiments and Effect of Die Materials (521) 1052
H. J. Larrazabal, A. N. Hrymak, McMaster University

T18—Instrumentation Rheology

A New Method of Rheological Analysis for Polymer QA and Product Development (159) 1058
D. De Laney, J. Sweinhart, Dynisco Polymer Test

Rheology beyond One Million Reciprocal Seconds (100) .. 1062
D. W. Riley, Extrusion Engineers

Practical New Applications for an On-Line Rheometer (158) .. 1069
D. De Laney, S. Oliver, Dynisco Polymer Test

Small Scale Flow Visualisation of Polymer Melts in a Recirculation Extruder (240) 1074
T. Gough, M. T. Martyn, R. Spares, P. D. Coates, University of Bradford

Flow Visualisation of Polymer Melt Contraction Flows for Validation of Numerical Simulations (234) 1079
R. Spares, T. Gough, M. T. Martyn, P. Olley, P. D. Coates, University of Bradford

Melt Index from a Single Pellet (47) 1084
J. D. Clay, Battelle Memorial Institute

T38—Process Rheology

Separability Criteria for Entangled Polystyrene Solutions Using Flow Birefringence (87) 1090
M. T. Islam, L. A. Archer, Texas A&M University

Shear and Elongational Rheology of Some Polyolefins of Different Molecular Parameters (121) 1095
J. R. Collier, S. Petrovan, P. Patil, University of Tennessee
B. Seyfzadeh, Clemson University

Standard Reference Materials: Non-Newtonian Fluids for Rheological Measurements (365) 1100
C. R. Schultheisz, National Institute of Standards and Technology
G. B. McKenna, Texas Tech University

Application of Chemo-Rheology to Establish a Process Window for a New Solventless System to Manufacture Pre-Pregs and Laminates for Electronic Applications (194) .. 1105
L. M. Dehnke, Permadi, J. M. Castro, The Ohio State University

High Shear Rheology of Calcium Carbonate slurries (382) .. 1110
G. A. Campbell, M. E. Zak, Clarkson University

The Effect of Pigment Type and Concentration on the Rheological Properties of Polypropylene (496) 1115
A. F. Marks, G. M. McNally, W. R. Murphy, P. Orr, The Queen’s University of Belfast
New Advances in Torque Rheometry (838) .. 1120
A. Yacykewych, C. W. Brabender Instruments, Inc.
Reduction of Viscosity of Polymer Melt by Shear-Thinning and Disentanglement: Rheological Criteria and Commercial Perspectives (482) .. 1125
J. P. Ibar, EKNET Research

W19—Wire and Cable Rheology

Flow Visualization of Polymer Processing Additives Effects (287) .. 1132
K. B. Migler, National Institute of Standards and Technology
C. Lavalle, 3M Canada Company
M. P. Dillon, S. S. Woods, Dynene LLC
C. L. Gettinger, 3M Company
Rheology and Crystallization in Fiber Optic Cable Jacket and Conduit Extrusion (457) .. 1144
S. H. Wasserman, J. L. Adams, Union Carbide Corporation
Strain Hardening Behavior in Elongational Viscosity for Blends of Linear Polymer and Crosslinked Polymer (759) .. 1149
M. Yamaguchi, TOSOH Corporation
Rheological Behavior of Thermotropic Liquid Crystalline Copolyester Vectra A950 (719) .. 1154
T. Guo, G. M. Harrison, A. A. Ogale, Clemson University
Nonlinear Rheological Behavior of LDPE Melt during Capillary Extrusion under Vibration Force Field (946) .. 1159
X. Peng, J. Qu, H. Zeng, South China University of Technology

W26—Rheology in Polymer Analysis

*Rheology as a Tool for the Polymer Scientist (312) .. 1906
M. T. Shaw, University of Connecticut
*Dynamic Mechanical Analysis of Aromatic Polyamide/Ethylene-Propylene-Diene Terpolymer Laminates (531) .. 1910
G. Severe, D. Harris, U.S. Army Research Laboratory
C. Macosko, University of Minnesota
*A Portable On-Line Rheometer (613) .. 1915
M.-W. Young, D. B. Todd, Polymer Processing Institute
*The Effect of Contraction Angle on the Entrance Pressure Loss (1) .. 1920
E. Mitsoulis, National Technical University of Athens
S. G. Hatzikiriakos, The University of British Columbia
*Visualisation of Melt Interface in a Co-Extrusion Geometry (244) .. 1925
M. T. Martyn, T. Gough, R. Spares, P. D. Coates, University of Bradford
*Rheological Response of Polystyrene/Ortho-Terphenyl Solutions (184) .. 1930
X. Shi, P. A. O’Connell, G. B. McKenna, Texas Tech University
*The Deformation and Breakup of a LCP Droplet Suspended in Molten Polypropylene Sheet under Extensional Flow (214) .. 1935
Y. C. Liang, A. I. Isayev, The University of Akron

JOINING OF PLASTICS & COMPOSITES DIVISION

T17—Adhesives Bonding

Self Adhesive Liquid Silicone Rubbers (LSRs) for the Injection Molding of Rigid Flexible Combinations (895) .. 1166
S. Bodhammer, E. Henze, GE Bayer Silicones GmbH & Co. KG
Characterization of Adhesive Failure and Modeling for Dynamic Analysis (853) .. 1170
N. Suresh, C. Patterson, DaimlerChrysler
G. Newaz, Wayne State University
G. Chapmann II, L. J. Oswald, DaimlerChrysler Liberty and Technical Affairs
Epoxy Adhesives: Effect of Plasma Treatment and Surface Roughness on Epoxy to Polyethylene Bond Strength (560) .. 1175
S. P. Petrie, E. F. Bardsley, University of Massachusetts, Lowell
Bonding of Vulcanized Rubber to Polyester Fibers with Modified RFL Adhesives (263) .. 1179
C. Ruksakulpiwat, Khon Kaen University
G. R. Hamed, The University of Akron

*Present in a joint session.
Mechanical Testing and Characterisation of a Steel Adherend Bonded Using an Automotive Grade Epoxy Adhesive (402)
S. M. Tavakoli, E. J. C. Kellar, TWI
C. Vlattas, European Marine Contractors Ltd.

T37—Joining of Plastics and Composites

Solvent Welding of ABS and HIPS—A Case Study in Methylene Chloride Substitution (783)
J. Desai, C. M. F. Barry, J. L. Mead, R. G. Stacer, University of Massachusetts, Lowell

Optimized Mechanical Performance of Welded and Molded Butt Joints: Part I—Similarities and Differences (67)
V. Kagan, Honeywell International

Optimized Mechanical Performance of Welded and Molded Butt Joints: Part II—Weld and Knit Lines Integrity (1063)
V. Kagan, Honeywell International

Environmental Lining Systems—Raising the Standards (305)
I. D. Froment, TWI Ltd.

Substitution of Metallic Insert Joints by Two-Shot-Molding (615)
A. Tome, G. W. Ehrenstein, University of Erlangen

Welding of a Thermoplastic Elastomer (497)
C. Tiichert, C. Bonten, E. Schmachtenberg, University of Essen

W18—Vibration and Ultrasonic Welding

Meltdown-Time Profiles of Vibration Welded Nylon 66 Compounds (515)
P. J. Bates, J. MacDonald, Royal Military College of Canada

V. Sidiropoulos, Queen’s University Centre for Automotive Materials and Manufacturing

H. Liang, DuPont Canada

Vibration Welding of Dissimilar Nylons (942)
V. LeBlanc, L. Qi, D. Watt, University of Windsor

B. Baylis, Siemens Automotive

Investigation of Non-Thermal Effects Produced by Ultrasonic Heating on Curing of Two-Part Epoxy Adhesive (807)
K. M. Kwan, A. Benatar, The Ohio State University

Modeling of Ultrasonic Forced Wetting Process by Dimensional Analysis (809)
K. M. Kwan, A. Benatar, The Ohio State University

W34—Joining of Plastics and Composites

Joining of Thermoplastics with Friction Stir Welding (1031)
C. D. Sorensen, T. W. Nelson, S. Strand, C. Johns, J. Christensen, Brigham Young University

Hot Plate Welding of Glass Reinforced Polypropylene (33)
M. J. Oliveira, F. M. Duarte, D. Tchalamov, A. M. Cunha, Universidade do Minho

Experiments on the Induction Welding of Thermoplastics (856)
V. K. Stokes, GE Corporate Research and Development

V. Kagan, R. Bray, A. Chambers, Honeywell International

Forward to Better Understanding of Optical Characterization and Development of Colored Polyamides for the Infra-Red/Laser Welding: Part II—Family of Colored Polyamides (1062)
V. Kagan, A. Chambers, R. Bray, Honeywell International

ROTATIONAL MOLDING DIVISION

M14—Materials

Investigations into Rotational Moulding of Short Fibre Reinforced Thermoset Resins (624)
S. Bickerton, R. J. Crawford, The University of Auckland

A Preliminary Investigation into the Use of Wood Fibres as a Filler in the Rotational Molding of Polyethylene (593)
G. W. G. McDowell, J. F. Orr, J. Kissick, The Queen’s University of Belfast

R. J. Crawford, The University of Auckland
Studies on the Rotomolding of Liquid Crystalline Polymers (764) 1286
P. Rangarajan, E. Scribben, J. Huang, M. Rapp, D. Baird, Virginia Polytechnic Institute and
State University

Some New Results on Rotational Molding of Metallocene Polyethylenes (211) 1291
D. Annechini, E. Takács, J. Vlachopoulos, McMaster University

Blends of Recycled Polyethylenes and Metallocene Impact Modifiers for Rotational Molding (485) 1296
E. Takács, J. Vlachopoulos, McMaster University
M. Kontopoulou, Queen’s University
E. Voldner, Synergy Polymer Inc.
K. Nichols, Pavaco Rubber

M35—Processing

Modeling of Shrinkage and Densification of Powder Compacts (75) 1302
M. Kontopoulou, Queen’s University

Non-Isothermal Melt Densification in Rotational Molding (787) 1307
J. S. Tiang, C. T. Bellehumeur, University of Calgary

Importance of Timely Polymer Sintering versus Blowing Agent Decomposition in Rotational Foam Molding of Polypropylene (909) 1312
R. Pop-Iliev, G. M. Rizvi, C. B. Park, University of Toronto

Rotomolded Part Density and Its Relationship to Physical Properties (93) 1317
F. T. Dodge, J. L. Perry, Equistar Chemicals, LP

Polyethylene Powder Characteristics: Impact on Polymer Sintering and Rotational Molding (784) 1321
S. A. Guillén-Castellanos, C. T. Bellehumeur, University of Calgary
M. Weber, NOVA Chemicals Ltd.

The Influence of Different Processing Parameters on the Properties of Polypropylene for Rotational Moulding (519) 1326
J. P. F. Van Hooijsdonk, M. P. Kearns, C. G. Armstrong, The Queen’s
University of Belfast
B. McCann, L. Coey, Clarehill Plastics Limited
R. J. Crawford, The University of Auckland

Falling Weight Impact Testing Analysis of Rotationally Moulded Polyethylene (79) 1331
J. Kissick, X. Wang, E. Harkin-Jones, The Queen’s University of Belfast
R. J. Crawford, The University of Auckland

Studies in Rotational Moulding of Linear Polyethylene Modified with Elastomers and Fillers for Automotive Exteriors (349) 1336
Y. B. Vasudeo, S. M. Nabar, J. Kapadia, R. Rangaprasad, Reliance Industries Limited

VOLUME II—MATERIALS

ELECTRICAL AND ELECTRONIC DIVISION

M7—Polymer Related Issues in Microelectronic Applications

Improving the Reliability and Performance of Microelectronic Packaging (182) 1340
J. Weaver, K. T. Gam, Y. Oh, L. Bonnaud, S. Suh, H.-J. Sue, Texas A&M University
M. Todd, Q. Ji, M. Edwards, Dexter Corporation

Structural Mechanics of Polymer Coated Optical Glass Fibers: Review (2) 1344
E. Suhir, Lucent Technologies, Inc.

Novel Nanoporous Polymers for Low-k Dielectrics (773) 1349
S. L. Simon, J. Sun, P. Doshi, B. Lahlouh, X. Chen, S. Gangopadhyay, Texas Tech University

W37—Conductive Polymers

Potential Commercial Opportunities for New Inherently Conducting Polymer Compounds in ESD Control Applications (364) 1354
S. J. Dahman, RTP Company

Anisotropic Electrical Percolation Due to Chaotic Mixing of Short Carbon Fibers and Low Density Polyethylene (724) 1359
S. G. Kasliwal, A. A. Ogale, D. A. Zumbrunnen, Clemson University

Comparison of Electrical, Thermal, and Mechanical Properties of Carbon Filled Resins (28) 1364