COMPUTATIONAL FLUID AND SOLID MECHANICS

Proceedings
First MIT Conference on Computational Fluid and Solid Mechanics
June 12–15, 2001

Editor:
K.J. Bathe
Massachusetts Institute of Technology,
Cambridge, MA, USA

VOLUME 1

2001

ELSEVIER

Contents Volume 1

Preface ... v
Session Organizers ... vi
Fellowship Awardees ... vii
Sponsors .. ix

Plenary Papers

Aluru, N., Ye, W., Ramaswamy, D., Wang, X., White, J.,
Efficient simulation techniques for complicated micromachined devices ... 2

Brezzi, F.,
Subgrid scales, augmented problems, and stabilizations ... 8

Dreisbach, R.L., Cosner, R.R.,
Trends in the design analysis of aerospace vehicles .. 11

Ingham, T.J.,
Issues in the seismic analysis of bridges ... 16

Lions, J.L.,
Virtual control algorithms ... 20

Makinouchi, A., Teodosiu, C.,
Numerical methods for prediction and evaluation of geometrical defects in sheet metal forming 21

McQueen, D.M., Peskin, C.S., Zhu, L.,
The Immersed Boundary Method for incompressible fluid–structure interaction 26

Ottolini, R.M., Rohde, S.M.,
GMs journey to math: the virtual vehicle ... 31

Solids & Structures

Antony, S.J., Ghadiri, M.,
Shear resistance of granular media containing large inclusions: DEM simulations .. 36

Araya, R., Le Tallec, P.,
Hierarchical a posteriori error estimates for heterogeneous incompressible elasticity 39

Augusti, G., Mariano, P.M., Stazi, F.L.,
Localization phenomena in randomly microcracked bodies ... 43

Austrell, P.-E., Olsson, A.K., Jönsson, M.,
A method to analyse the nonlinear dynamic behaviour of rubber components using standard FE codes 47

Bagar, Y., Hanksöter, U., Kintzel, O., Schwab, C.,
Simulation of large deformations in shell structures by the p-version of the finite element method 50

Bardenhagen, S.G., Byutner, O., Bedrov, D., Smith, G.D.,
Simulation of frictional contact in three-dimensions using the Material Point Method 54
Bauhau, O.A., Bottasso, C.L.,
On the modeling of shells in multibody dynamics .. 58
Baylot, J.T., Papados, P.P.,
Fragment impact pattern effect on momentum transferred to concrete targets 61
Bécache, E., Joly, P., Scarella, G.,
A fictitious domain method for unilateral contact problems in non-destructive testing 65
Belforte, G., Franco, W., Sorli, M.,
Time–frequency pneumatic transmission line analysis 68
Böhm, F., Duda, A., Wille, R.,
On some relevant technical aspects of tire modelling in general 72
Borri, M., Bottasso, C.L., Trainelli, L.,
An index reduction method in non-holonomic system dynamics 74
Boucard, P.A.,
Application of the LATIN method to the calculation of response surfaces 78
Brunet, M., Morestin, F., Walter, H.,
A unified failure approach for sheet-metals formability analysis 82
Bull, J.W.,
Underground explosions: their effect on runway fatigue life and how to mitigate their effects 85
Cacciola, P., Impollonia, N., Muscolino, G.,
Stochastic seismic analysis of R-FBI isolation system 88
Carter, J.P., Wang, C.X.,
Geometric softening in geotechnical problems ... 91
Cen, S., Long, Y., Yao, Z.,
A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates 95
Chakraborty, S., Brown, D.A.,
Simulating static and dynamic lateral load testing of bridge foundations using nonlinear finite element models .. 99
Chapelle, D., Ferent, A.,
Asymptotic analysis of the coupled model shells-3D solids 104
Chapelle, D., Oliveira, D.L., Bucalem, M.L.,
Some experiments with the MITC9 element for Naghdi shell model 107
Chen, X., Hisada, T.,
Frictional contact analysis of articular surfaces ... 111
Choi, H.Y., Lee, S.H., Lee, J.H., Haug, E.,
Finite element modeling of human head–neck complex for crashworthiness simulation 114
Chun, B.K., Jinn, J.T., Lee, J.K.,
A constitutive model associated with permanent softening under multiple bend–unbending cycles in sheet metal forming and springback analysis .. 120
Crouch, R.S., Fernandez-Vega, J.,
Non-linear wave propagation in softening media through use of the scaled boundary finite element method .. 125
Czekanski, A., Meguid, S.A.,
Time integration for dynamic contact problems: generalized-α scheme 128
Dai, L.,
Semi-analytical solution to a mechanical system with friction 132
Davi, G., Milazzo, A.,
A novel displacement variational boundary formulation 134
David, S.A., Rosário, J.M.,
Investigation about nonlinearities in a robot with elastic members 137
De, S., Kim, J., Srinivasan, M.A.,
Virtual surgery simulation using a collocation-based method of finite spheres .. 140
Deeks, A.J., Wolf, J.P.,
Efficient analysis of stress singularities using the scaled boundary finite-element method 142
Djoudi, M.S., Bahai, H.,
Relocation of natural frequencies using physical parameter modifications ... 146
Duddeck, F.M.E.,
Fourier transformed boundary integral equations for transient problems of elasticity and thermo-elasticity 150
Dufour, F., Moresi, L., Mühlhaus, H.,
A fluid-like formulation for viscoelastic geological modeling stabilized for the elastic limit 153
Dvorkin, E.N., Demarco, D.,
An Eulerian formulation for modeling stationary finite strain elasto-plastic metal forming processes 156
Dvorkin, E.N., Toscano, R.G.,
Effects of internal/external pressure on the global buckling of pipelines .. 159
El-Abbasi, N., Bathe, K.J.,
On a new segment-to-segment contact algorithm .. 165
El-Abbasi, N., Meguid, S.A.,
Modeling 2D contact surfaces using cubic splines ... 168
Felippa, C.A.,
Optimal triangular membrane elements with drilling freedoms ... 171
Fernández-García, J.R., Sofonea, M., Viñaño, J.M.,
Numerical analysis of a sliding viscoelastic contact problem with wear ... 173
Frangi, A., Novati, G., Springhetti, R., Rovizzi, M.,
Numerical friction mechanics in 3D by the symmetric boundary element method 177
Galbraith, P.C., Thomas, D.N., Finn, M.J.,
Spring back of automotive assemblies .. 180
Gambarotta, L., Massabò, R., Morbiducci, R.,
Constitutive and finite element modeling of human scalp skin for the simulation of cutaneous surgical procedures 184
Gebbeken, N., Greulich, S., Pietzsch, A., Landmann, F.,
Material modelling in the dynamic regime: a discussion .. 186
Gendron, G., Fortin, M., Goulart, P.,
Error estimation and edge-based mesh adaptation for solid mechanics problems 192
Gharai, E.S., McCartney, J.S., Frangopol, D.M.,
Reliability-based importance assessment of structural members .. 198
Ghioce, D.M., Mao, H.,
Probabilistic life prediction for mechanical components including HCF/LCF/creep interactions 201
Giner, E., Fuenmayor, J., Besa, A., Tur, M.,
A discretization error estimator associated with the energy domain integral method in linear elastic fracture mechanics ... 206
González, C., Llorca, J.,
Micromechanical analysis of two-phase materials including plasticity and damage 211
Goto, K., Yagawa, G., Miyamura, T.,
Accurate analysis of shell structures by a virtually meshless method .. 214
Guilkey, J.E., Weiss, J.A.,
An implicit time integration strategy for use with the material point method ... 216
Gupta, S., Manohar, C.S.,
Computation of reliability of stochastic structural dynamic systems using stochastic FEM and adaptive importance sampling with non-Gaussian sampling functions ... 220
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guz, I.A., Soutis, C., Accuracy of analytical approaches to compressive fracture of layered solids under large deformations</td>
<td>224</td>
</tr>
<tr>
<td>Hadjesfandiari, A.R., Dargush, G.F., Computational elasticity based on boundary eigensolutions</td>
<td>227</td>
</tr>
<tr>
<td>Han, S., Xiao, M., A continuum mechanics based model for simulation of radiation wave from a crack</td>
<td>235</td>
</tr>
<tr>
<td>Hadriek, M., Kompiš, V, Novák, P., Large strain, large rotation boundary integral multi-domain formulation using the Trefftz polynomial functions</td>
<td>238</td>
</tr>
<tr>
<td>Harnau, M., Schweizerhof, K., About linear and quadratic ‘Solid-Shell elements at large deformations</td>
<td>240</td>
</tr>
<tr>
<td>Hartmann, U., Kraggel, F., Hierl, T., Lonsdale, G., Klöppel, R., Skull mechanic simulations with the prototype SimBio environment</td>
<td>243</td>
</tr>
<tr>
<td>Havu, V., Hakula, H., An analysis of a bilinear reduced strain element in the case of an elliptic shell in a membrane dominated state of deformation</td>
<td>247</td>
</tr>
<tr>
<td>Ibrahimbegović, A., Recent developments in nonlinear analysis of shell problem and its finite element solution</td>
<td>251</td>
</tr>
<tr>
<td>Ingham, T.J., Modeling of friction pendulum bearings for the seismic analysis of bridges</td>
<td>255</td>
</tr>
<tr>
<td>Iozzi, R., Gaudenzi, P., MITC finite elements for adaptive laminated composite shells</td>
<td>259</td>
</tr>
<tr>
<td>Janajreh, I., Rezgui, A., Estenne, V., Tire tread pattern analysis for ultimate performance of hydroplaning</td>
<td>264</td>
</tr>
<tr>
<td>Kanapady, R., Tamma, K.K., Design and framework of reduced instruction set codes for scalable computations for nonlinear structural dynamics</td>
<td>268</td>
</tr>
<tr>
<td>Kang, M.-S., Youn, S.-K., Dof splitting p-adaptive meshless method</td>
<td>272</td>
</tr>
<tr>
<td>Kapinski, S., Modelling of friction in metal-forming processes</td>
<td>276</td>
</tr>
<tr>
<td>Kashtalyan, M., Soutis, C., Modelling of intra- and interlaminar fracture in composite laminates loaded in tension</td>
<td>279</td>
</tr>
<tr>
<td>Kawka, M., Bathe, K.J., Implicit integration for the solution of metal forming processes</td>
<td>283</td>
</tr>
<tr>
<td>Kim, H.S., Yim, H.J., Kim, C.B., Computation of stress time history using FEM and flexible multibody dynamics</td>
<td>287</td>
</tr>
<tr>
<td>Kong, J.S., Akgul, F., Frangopol, D.M., Xi, Y., Probabilistic models for predicting the failure time of deteriorating structural systems</td>
<td>290</td>
</tr>
<tr>
<td>Koteras, J.R., Gullerud, A.S., Porter, V.L., Scherzinger, W.M., Brown, K.H., PRESTO: impact dynamics with scalable contact using the SIERRA framework</td>
<td>294</td>
</tr>
<tr>
<td>Krätzig, W.B., Jun, D., Layered higher order concepts for D-adaptivity in shell theory</td>
<td>297</td>
</tr>
<tr>
<td>Krishnamoorthy, C.S., Annamalai, V, Vinu Unnithan, U., Superelement based adaptive finite element analysis for linear and nonlinear continua under distributed computing environment</td>
<td>302</td>
</tr>
<tr>
<td>Kübler, L., Eberhard, P., Multibody system/finite element contact simulation with an energy-based switching criterion</td>
<td>306</td>
</tr>
</tbody>
</table>
Laukkanen, A.,
Consistency of damage mechanics modeling of ductile material failure in reference to attribute transferability ... 310

LeBeau, K.H., Wadia-Fascetti, S.I.,
A model of deteriorating bridge structures .. 314

Leitão, V.M.A.,
Analysis of 2-D elastostatic problems using radial basis functions 317

Limbert, G., Taylor, M.,
An explicit three-dimensional finite element model of an incompressible transversely isotropic hyperelastic material: application to the study of the human anterior cruciate ligament .. 319

Liu, G.R., Liu, M.B., Lam, K.Y., Zong, Z.,
Simulation of the explosive detonation process using SPH methodology 323

Liu, G.R., Tu, Z.H.,
MFree2D©: an adaptive stress analysis package based on mesh-free technology 327

Lovadina, C.,
Energy estimates for linear elastic shells .. 330

Lubowiecka, I., Chróścielewski, J.,
On the finite element analysis of flexible shell structures undergoing large overall motion 332

Luo, A.C.J.,
A numerical investigation of chaotic motions in the stochastic layer of a parametrically excited, buckled beam 336

Lyamin, A.V., Sloan, S.W.,
Limit analysis using finite elements and nonlinear programming 338

Malinen, M., Pitkäranta, J.,
On degenerated shell finite elements and classical shell models 342

Martikainen, J., Mikkinen, R.A.E., Rossi, T., Toivanen, J.,
A fictitious domain method for linear elasticity problems 346

Massin, P., Al Mikdad, M.,
Thick shell elements with large displacements and rotations 351

Mathisen, K.M., Tiller, I., Okstad, K.M.,
Adaptive ultimate load analysis of shell structures 355

Matsumoto, T., Tanaka, M., Okayama, S.,
Boundary stress calculation for two-dimensional thermoelastic problems using displacement gradient boundary integral identity ... 359

Adagio: non-linear quasi-static structural response using the SIERRA framework 361

Toukourou, M.M., Gakwaya, A., Yazdani, A.,
An object-oriented finite element implementation of large deformation frictional contact problems and applications ... 365

Němeček, J., Paták, B., Bittnar, Z.,
Parallel simulation of reinforced concrete column on a PC cluster 369

Noguchi, H., Kawashima, T.,
Application of ALE-EFGM to analysis of membrane with sliding cable 372

Nuño, N., Avanzolini, G.,
Modeling residual stresses at the stem–cement interface of an idealized cemented hip stem 374

Obrecht, H., Brünig, M., Berger, S., Ricci, S.,
Nonlocal numerical modelling of the deformation and failure behavior of hydrostatic-stress-dependent ductile metals ... 378

Olson, L., Throne, R.,
Estimation of tool/chip interface temperatures for on-line tool monitoring: an inverse problem approach 381
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instability problems in shell structures: some computational aspects</td>
<td>385</td>
</tr>
<tr>
<td>Genetic algorithm for crack detection in beams</td>
<td>389</td>
</tr>
<tr>
<td>A geometric-algebraic method for semi-definite problems in structural mechanics</td>
<td>393</td>
</tr>
<tr>
<td>Parallel algorithm for explicit dynamics with support for nonlocal constitutive models</td>
<td>396</td>
</tr>
<tr>
<td>Rheological effects and bone remodelling phenomenon in the hip joint implantation</td>
<td>399</td>
</tr>
<tr>
<td>Computational synthesis on vehicle rollover protection</td>
<td>403</td>
</tr>
<tr>
<td>Sensitivity study on material characterization of textile composites</td>
<td>406</td>
</tr>
<tr>
<td>Uncertainty analysis of large-scale structures using high fidelity models</td>
<td>410</td>
</tr>
<tr>
<td>A note on symmetric Galerkin BEM for multi-connected bodies</td>
<td>413</td>
</tr>
<tr>
<td>Vibration suppression of laminated composite plates using magnetostrictive inserts</td>
<td>416</td>
</tr>
<tr>
<td>PDFs of the stochastic non-linear response of MDOF-systems by local statistical linearization</td>
<td>420</td>
</tr>
<tr>
<td>Effects of uncertainties on lifetime prediction of aircraft components</td>
<td>425</td>
</tr>
<tr>
<td>Computational and physical modelling of penetration resistance</td>
<td>429</td>
</tr>
<tr>
<td>h- versus p-version finite element analysis for J2 flow theory</td>
<td>431</td>
</tr>
<tr>
<td>Simulation of interface fatigue crack growth via a fracture process zone model</td>
<td>435</td>
</tr>
<tr>
<td>Improved direct time integration method for impact analysis</td>
<td>438</td>
</tr>
<tr>
<td>The p-version FEA: high performance with and without parallelization</td>
<td>441</td>
</tr>
<tr>
<td>Finite-element simulation of complex dynamic fracture processes in concrete</td>
<td>445</td>
</tr>
<tr>
<td>General traction BE formulation and implementation for 2-D anisotropic media</td>
<td>449</td>
</tr>
<tr>
<td>Boundary and internal layers in thin elastic shells</td>
<td>452</td>
</tr>
<tr>
<td>General properties of thin shell solutions, propagation of singularities and their numerical incidence</td>
<td>454</td>
</tr>
<tr>
<td>Reliability analysis of structures against buckling according to fuzzy number theory</td>
<td>456</td>
</tr>
<tr>
<td>Simulation of cup-cone fracture in round bars using the cohesive zone model</td>
<td>460</td>
</tr>
<tr>
<td>Response of a continuous system with stochastically varying surface roughness to a moving load</td>
<td>463</td>
</tr>
</tbody>
</table>
Schröder, J., Miehe, C.,
Elastic stability problems in micro-macro transitions .. 468

Semedo Garçao, J.E., Mota Soares, C.M., Mota Soares, C.A., Reddy, J.N.,
Modeling of adaptive composite structures using a layerwise theory 471

Sladek, J., Sladek, V., Van Keer, R.,
The local boundary integral equation and its meshless implementation for elastodynamic problems ... 473

Slinchenko, D., Verijenko, V.E.,
Structural analysis of composite lattice structures on the basis of smearing stiffness 475

Sorić, J., Tonković, Z.,
Computer techniques for simulation of nonisothermal elastoplastic shell responses 478

Stander, N.,
The successive response surface method applied to sheet-metal forming 481

Szabó, B.A., Actis, R.L.,
Hierarchic modeling strategies for the control of the errors of idealization in FEA 486

Tahter, B., Crouch, R.S.,
Techniques to ensure convergence of the closest point projection method in pressure dependent elasto-plasticity models ... 490

Takahashi, A., Yagawa, G.,
Molecular dynamics calculation of 2 billion atoms on massively parallel processors 496

Tedesco, J.W., Bloomquist, D., Latta, T.E.,
Impact stresses in A-Jacks concrete armor units ... 499

Thompson, L.L., Thangavelu, S.R.,
A stabilized MITC finite element for accurate wave response in Reissner-Mindlin plates 502

Tijssens, M.G.A., van der Giessen, E., Sluys, L.J.,
Modeling quasi-static fracture of heterogeneous materials with the cohesive surface methodology ... 509

Tsukrov, I., Novak, J.,
Application of numerical conformal mapping to micromechanical modeling of elastic solids with holes of irregular shapes ... 513

Tyler-Street, M., Francis, N., Davis, R., Kapp, J.,
Impact simulation of structural adhesive joints ... 517

Vermeer, P.A., Ruse, N.,
On the stability of the tunnel excavation front ... 521

Verrijt, A.,
Numerical aspects of analytical solutions of elastodynamic problems 524

Vidrascu, M., Delingette, H., Ayache, N.,
Finite element modeling for surgery simulation ... 527

Vlachoutsis, S., Clinckemaillie, J.,
Distributed memory parallel computing for crash and stamp simulations 530

Vodička, R.,
The first-kind and the second-kind boundary integral equation systems for some kinds of contact problems with friction ... 533

Wagner, W., Klinkel, S., Gruttmann, F.,
On the computation of finite strain plasticity problems with a 3D-shell element 536

Wang, J.G., Liu, G.R.,
Radial point interpolation method for no-yielding surface models 538

Wang, X., Bathe, K.J., Walczak, J.,
A stress integration algorithm for J1-dependent elasto-plasticity models 542

Whittle, A.J., Hsieh, Y.M., Pinto, F., Chatzigiannelis, Y.,
Numerical and analytical modeling of ground deformations due to shallow tunneling in soft soils ... 546
Witkowski, W., Labowiecka, I.,
Identification of chaotic responses in a stable Duffing system by artificial neural network ... 550
Yang, C., Soh, A.-K.,
Special membrane elements with internal defects .. 554
Zarka, J., Karaouni, H.,
Fatigue analysis during one-parametered loadings .. 559
Zdunek, A.,
Non-linear stability analysis of stiffened shells using solid elements and the p-version FE-method 562
Zhang, Y., Lin, J.,
Random vibration of structures under multi-support seismic excitations ... 566
Zhao, K.,
On simulation of a forming process to minimize springback .. 568
Zhou, X., Tamma, K.K., Sha, D.,
Linear multi-step and optimal dissipative single-step algorithms for structural dynamics 571
Zhu, P., Abe, M., Fujino, Y.,
A 3D contact-friction model for pounding at bridges during earthquakes 575
Zohdi, T.I., Wriggers, P.,
Computational testing of microheterogeneous materials ... 579

Optimization & Design

Al-Dojayli, M., Meguid, S.A.,
Shape optimization of frictional contact problems using genetic algorithm ... 584
Bartoli, G., Borri, C., Facchini, L., Patar, F.,
Simulation of non-gaussian wind pressures and estimation of design loads 588
Bisagni, C.,
Optimization of helicopter subfloor components under crashworthiness requirements 591
Bull, J.W.,
Some results from the Self-Designing Structures research programme ... 595
Butkewitsch, S.,
On the use of meta-models to account for multidisciplinarity and uncertainty in design analysis and optimization ... 599
Cardona, A.,
Design of cams using a general purpose mechanism analysis program 603
Cheng, G., Guo, X.,
On singular topologies and related optimization algorithm ... 606
Connell, M., Tullberg, O., Kettel, P., Wiberg, N.-E.,
Interactive design and investigation of physical bridges using virtual models ... 608
Consolazio, G.R., Chung, J.H., Gurley, K.R.,
Design of an inertial safety barrier using explicit finite element simulation ... 612
Dall’Acqua, D., Lipsett, A.W., Faulkner, M.G., Kaiser, T.M.V.,
An efficient thermomechanical modeling strategy for progressing cavity pumps and positive displacement motors 616
Doxsee Jr., L.E.,
Using Pro/MECHANICA for non-linear problems in engineering design ... 620
Dreisbach, R.L., Peak, R.S.,
Enhancing engineering design and analysis interoperability. Part 3: Steps toward multi-functional optimization ... 624
Ghiocel, D.M.,
Stochastic process/field models for turbomachinery applications ... 628
Gu, Y., Zhao, G., Chen, Y.,
Optimum design and sensitivity analysis of piezoelectric trusses .. 633

Hagiwara, I., Shi, Q.Z.,
Vehicle crashworthiness design using a most probable optimal design method 637

Harte, R., Montag, U.,
Computer simulations and crack-damage evaluation for the durability design of the world-largest cooling tower shell at Niederaussem power station .. 641

Hartmann, D., Baitisch, M., Weber, H.,
Structural optimization in consideration of stochastic phenomena – a new wave in engineering 645

Hollowell, W.T., Summers, S.M.,
NHTSAs supporting role in the partnership for a new generation of vehicles 649

Iványi, P., Topping, B.H.V., Muylle, J.,
Towards a CAD design of cable–membrane structures on parallel platforms 652

James, R.J., Zhang, L., Schaaf, D.M., Werncke, G.A.,
The effect of hydrodynamic loading on the structural reliability of culvert valves in lock systems 655

Kolanek, K., Stocki, R., Jendo, S., Kleiber, M.,
An efficiency of numerical algorithms for discrete reliability-based structural optimization 660

Krishnamoorthy, C.S.,
Genetic algorithms and high performance computing for engineering design optimization 663

Lauris, S.S., Keskinen, E.K., Cotsaftis, M.,
Dynamics of wearing contact in groundwood manufacturing system ... 668

Liu, S., Lian, Z., Zheng, X.,
Design optimization of materials with microstructure ... 672

Liu, C., Wang, T.-L., Shahawy, M.,
Load lateral distribution for multigirder bridges ... 676

Maleki, S.,
Effects of diaphragms on seismic response of skewed bridges .. 681

Matsuho, A.S., Frangopol, D.M.,
Applications of artificial-life techniques to reliability engineering ... 685

Maute, K., Nikbay, M., Farhat, C.,
HPC for the optimization of aeroelastic systems ... 688

Miller, B., Ziemiański, L.,
Updating of a plane frame using neural networks ... 692

Ogawa, Y., Ochiai, T., Kawahara, M.,
Shape optimization problem based on optimal control theory by using speed method 696

Papadrakakis, M., Lagaros, N.D.,
Reliability based optimization using neural networks .. 698

Papadrakakis, M., Lagaros, N.D., Fragakis, Y.,
Parallel computational strategies for structural optimization ... 701

Peak, R.S., Wilson, M.W.,
Enhancing engineering design and analysis interoperability. Part 2: A high diversity example 704

Peri, D., Campana, E.F., Di Mascio, A.,
Development of CFD-based design optimization architecture ... 708

Peterson, D.M.,
The functional virtual prototype: an innovation framework for a zero prototype design process 711

Prasad Varma Thampan, C.K., Krishnamoorthy, C.S.,
An HPC model for GA methodologies applied to reliability-based structural optimization 714
Contents Volume 1

Rovas, D.V., Leurent, T., Prud’homme, C., Patera, A.T.,
Reduced-basis output bound methods for heat transfer problems .. 718

Schramm, U.,
Multi-disciplinary optimization for NVH and crashworthiness ... 721

Sedaghati, R., Tabarrok, B., Suleman, A.,
Optimum design of frame structures undergoing large deflections against system instability 725

Senecal, P.K., Reitz, R.D.,
CFD modeling applied to internal combustion engine optimization and design .. 729

Shan, C.,
Difficulties and characteristics of structural topology optimization .. 733

Shankaran, S., Jameson, A.,
Analysis and design of two-dimensional sails .. 737

Sheikh, S.R., Sun, M., Hamdani, H.,
Existence of a lift plateau for airfoils pitching at rapid pitching rates .. 739

Stander, N., Burger, M.,
Shape optimization for crashworthiness featuring adaptive mesh topology .. 743

Steven, G.P., Proos, K., Xie, Y.M.,
Multi-criteria evolutionary structural optimization involving inertia ... 747

Wilson, M.W., Peak, R.S., Fulton, R.E.,
Enhancing engineering design and analysis interoperability. Part 1: Constrained objects 750

Wolfe, R.W., Heninger, R.,
Retrofit design and strategy of the San Francisco–Oakland Bay Bridge continuous truss spans support towers based on ADINA .. 755

Wu, J., Zhang, R.R., Radons, S.,
Vibration transmissibility of printed circuit boards by calibrated FEA modeling 758