JANNAF
36TH COMBUSTION SUBCOMMITTEE MEETING

VOLUME II

NASA Kennedy Space Center
and
The DoubleTree Oceanfront Hotel
Cocoa Beach, FL
18 - 21 October 1999

CHEMICAL PROPULSION INFORMATION AGENCY
• THE JOHNS HOPKINS UNIVERSITY •
• WHITING SCHOOL OF ENGINEERING • COLUMBIA, MARYLAND 21044-3204 •

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited.
A DTIC-sponsored DoD Information Analysis Center operating under contract SPO700-97-D-4004
CONTENTS

Preface .. iii

* * *

GUNS

Solid Propellant Guns

Some Interesting Energetic Azido Nitramines

R. L. Simmons, Naval Surface Warfare Center, Indian Head, MD

XLCB: An Excel Based Closed-Bomb Reduction and Pressure Simulation Program

B. E. Homan and A. A. Juhasz, US Army Research Laboratory, Aberdeen Proving Ground, MD

Humidity and Temperature Effects on the Ballistic Performance of M14 Propellant

S. J. Ritchie, P. D. Lusk, and D. Whitney, Alliant Techsystems, Incorporated, Radford, VA

Gas-Propellant Interactions in Solid Propellant Guns

S. E. Ray, Network Computing Services, Incorporated, Minneapolis, MN

* * *

Gun Ignition Phenomena

Chemical Mechanism for ETC Plasma Interaction with Air

W. R. Anderson and M. A. Schroeder, US Army Research Laboratory, Aberdeen Proving Ground, MD

Electrothermal-Chemical (ETC) Closed Chamber Characterization of Plasma Capillaries

M. A. Del Guercio, US Army Research Laboratory, Aberdeen Proving Ground, MD

Plasma-Propellant Interaction Studies: Measurements of In-Depth Propellant Heating by Plasma Radiation; Investigation of Possible Plasma-Induced Propellant Erosion

A. W. Williams and K. J. White, US Army Research Laboratory, Aberdeen Proving Ground, MD

Surface Phenomena of Plasma-Treated Propellant Samples

CO₂ Laser Ignition of RDX at Atmospheric Pressure in Air and Nitrogen

A. Cohen and R. A. Beyer, US Army Research Laboratory, Aberdeen Proving Ground, MD

Electrothermal-Chemical Propulsion

ETC Closed-Chamber Interrupted-Burning Tests with JA2 and M30 Solid Propellants

Electrothermal-Chemical Propulsion (cont.)

Experimental Study on the Transient Interaction between a Plasma and a Propellant ... 119
 S. T. Thynell, National Science Foundation, Arlington, VA, and H. Zhou, J.-Q. Li, and T. A. Litzinger, The Pennsylvania State University, University Park, PA

Calculating the Chemical Compositions of Plasmas Generated by an Ablating-Capillary Arc Ignition System ... 133
 M. J. McQuaid and M. J. Nusca, US Army Research Laboratory, Aberdeen Proving Ground, MD

Modeling the Open-Air Plasma Jet from an ETC Igniter Using a Multi-Species Reacting Flow CFD Code ... 143
 M. J. Nusca and M. J. McQuaid, US Army Research Laboratory, Aberdeen Proving Ground, MD

Plasma Radiant Energy Distribution within a Propellant Bed; Simulation via Monte Carlo Calculations Using the LightTools® Optical Analysis Program 159
 K. J. White and A. W. Williams, US Army Research Laboratory, Aberdeen Proving Ground, MD

Role of In-depth Radiation Absorption on the Ignition of a Nitramine Propellant ... 171
 E. S. Kim, The Pennsylvania State University, University Park, PA, and S. T. Thynell, National Science Foundation, Arlington, VA

* * * * *

Modular Artillery Charge Systems

Extensions to NGEN Representation of Artillery and Tank Gun Interior Ballistics ... 189
 P. S. Gough, Paul Gough Associates, Incorporated, Portsmouth, NH

* * * * *

Liquid Propellant Guns and Barrel Erosion

Gun Tube Coatings in Distress .. 207

Preliminary Erosion Analysis for the Experimental M829E3 Kinetic Energy Round ... 219

* * * * *

GAS PHASE COMBUSTION

Kinetic and Decomposition Phenomena

A Theoretical Calculation of Electron Scattering Intensities for RDX in the Gas Phase ... 229
Kinetic and Decomposition Phenomena (cont.)

Thermal Decomposition of 2,2-Bis (Difluoroamino) Propane Studied by Pyrolysis/FTIR Spectrometry and Ab Initio MO Calculations ...239
M. C. Lin, D. Chakraborty, S. Jamindar, and J. Park, Emory University, Atlanta, GA, and C. D. Bedford, Naval Surface Warfare Center Weapons Division, China Lake, CA

Thermal Decomposition of BAMO/AMMO and BAMO/AMMO/TiO2 ...247
Y. J. Lee, G. N. Kudva, and T. A. Litzinger, The Pennsylvania State University, University Park, PA

Thermal Decomposition and Combustion of Ammonium Dinitramide: A Review ..255
R. Yang and V. Yang, The Pennsylvania State University, University Park, PA

Nitro Substituted Tetrahedranes, Are They Stable? ..285
T. Vladimiroff, US Army Tank-automotive and Armament Command/ARDEC, Picatinny Arsenal, NJ

Flame Structure Studies of NH3N2O/Ar Flames by Mass Spectrometry, Laser-Induced Fluorescence, and Modeling ...297

Kinetic Modeling of the Thermal Reaction of NO2 with NH3 ...305
M. C. Lin, J. Park, and S. Cates, Emory University, Atlanta, GA

The Partial Decomposition of TCP-Coated Orthorhombic Ammonium Perchlorate at Atmospheric Pressure: Analysis of Weight Loss Measurements ..317
K. J. Kraeutle, A. I. Atwood, and P. O. Curran, Naval Air Warfare Center Weapons Division, China Lake, CA

Computed Transition States and Activation Barriers for some Boron Ignition/Combustion Reactions331
P. Politzer, P. Lane, and M. C. Concha, University of New Orleans, New Orleans, LA

Structure Study of 2-Nitrimino-5-Nitro-Hexahydro-1,3,5-Triazine (NNHT) ..339
A. J. Bracuti, US Army Tank-automotive and Armament Command/ARDEC, Picatinny Arsenal, NJ

* * * * *

LIQUID COMBUSTION

Liquid and Hybrid Combustion Instability

Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber ...349
M. Rocker and T. E. Nesman, NASA Marshall Space Flight Center, Huntsville, AL

Burning Rate Characterization of OXSOL Liquid Oxidizer ...357
G. C. Harting, J. W. Mordosky, B. Q. Zhang, T. T. Cook, and K. K. Kuo, The Pennsylvania State University, University Park, PA

Optimum Nozzle Contours for Aerospike Nozzles Using the TDK 99™ Computer Code ...371
Liquid and Hybrid Combustion Instability (cont.)

Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor ... 379
M. Rocker, NASA Marshall Space Flight Center, Huntsville, AL

Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion ... 397
S. B. Margolis, Sandia National Laboratories, Livermore, CA

Author Index ... 417

Source Index ... 419

Meeting Attendees ... 423

Initial Distribution ... 427