Application of Stress-Wave Theory to Piles

Quality Assurance on Land and Offshore Piling

Edited by

Sussumu Niyama
Institute for Technological Research – IPT, São Paulo, Brazil

Jorge Beim
PDI Engenharia, Rio de Janeiro, Brazil
Table of contents

Preface XIII
Organization XV
Acknowledgements XVII

1 Wave mechanics and its application to pile analysis

Keynote lecture: Some wave mechanics applications
G.G.Goble

Analysis of bearing capacity of rock-socketed piles based on wave equation theory
L.B. Cai

Pile acceptance based on combined CAPWAP analyses
R.F.Stevens

Theoretical study on effect of pile shaft resistance on rebound during pile driving
R.P.Chen & Y.M.Chen

Time effect in determining pile capacity by dynamic methods
M.R.Svinkin

Set-up considerations in wave equation analysis of pile driving
C.W.Cho, M.W.Lee & M.F.Randolph

Drivability and performance of model piles driven into cemented calcareous sand
D.Bruno, M.F.Randolph, C.W.Cho & H.A.Joer

Automatic signal matching with CAPWAP
F.Rausche, L.Liang & B.Robinson

Combining static pile design and dynamic installation analysis in GRLWEAP
F.Rausche, B.Robinson & J.Seidel

Rules of thumb for field and construction engineer in relation to impact pile driving
W.J.Lucieer

2 Driving equipment and recent developments – New technologies for quality assurance of piles

Keynote lecture: Pile driving equipment: Capabilities and properties
F. Rausche

Hammer system design using wave equation analysis for testing cast-in-situ concrete piles
M.A. Mukaddam, W.M. Iskandarani & M. Hussein

Analysis of pile load transfer using optical fiber sensor
J.-H. Oh, W.-J. Lee, S.-B. Lee & W.-J. Lee

Set-up effect of cohesive soils in pile capacity
M.R. Svinkin & R. Skov

Modulus of elasticity and stiffness of composite hammer cushions
M.R. Svinkin

A new technique to drive piles: Down-the-hole piling
A. Benamar

Simplified neural network models for estimating soil resistance using dynamic pile test
R. Liang & N.O. Nawari

Pile capacity prediction using neural networks technique
A.S. Dyminsky, E. Parente-Ribeiro, C. Romanel & J.W. Beim

Hammer and pile cushion optimisation
G. Jonker & R.J. van Foeken

3 Pile integrity and low strain dynamic testing

Keynote lecture: Øresund link, grouting work under West Pylon: Integrity test of a giant pile
J. Romell

A study for the shape of pile with reflect-wave method
Yang Wu

Evaluation of the performance of an existing foundation via PIT tests
S.B. Foá, J.H.F. Pereira, R.P. Cunha & J. Camapum de Carvalho

Sonic integrity test of piles-integrity effected by basement excavation in Bangkok soft clay
N. Thasnapan, A.W. Maung, P. Tanseng & Z.Z. Aye

Non-destructive integrity testing on piles founded in Bangkok subsoil
N. Thasnapan, A.W. Maung, T. Navaneethan & Z.Z. Aye

Estimation of pile head stiffness using sonic integrity testing
K. Imada, T. Matsumoto & Y. Nakata

Integrity testing of cast-in-situ concrete piles associated with the construction of New Haccho Bridge
Y. Michi, T. Matsumoto & Y. Matsuda

Presentation of low strain integrity testing in the time-frequency domain
J.P. Seidel
First experiences in the application of the stress wave theory to foundations in Uruguay
A. Gutiérrez, L. Abreu, Ch. Hoffmann & D. Hasard
Detection and prevention of anomalies for augercast piling
G. Likins, G. Piscsalko, F. Rausche & C. M. Morgano
Recent advances and proper use of PDI low strain pile integrity testing
G. Likins & F. Rausche
Stress wave propagation velocity at early ages
C. Restrepo
Examination of a new cross-hole sonic logging system for integrity testing of drilled shafts
S. G. Paikowsky, L. R. Chernauskas, L. J. Hart, C. D. Ealy & A. F. DiMillio

4 Pile-soil interaction
Keynote lecture: Identification of soil-pile model interaction parameters from recorded
time-displacement signals
A. I. Husein Malkawi & I. M. Ayasrah
Load transfer analysis from increasing energy dynamic load tests in concrete piles driven
in very soft clay formation
J. Balech & N. Aoki
Dynamic pile testing and finite element calculations for the bearing capacity of a quay wall
foundation – Container terminal Altenwerder, Port of Hamburg
F. Kirsch, B. Plaßmann, T. Huch & W. Rodatz
The shaft dynamic response of a pile in clay: Induced pore pressure
A. Benamar
An investigation of pile diameter influence in the bearing capacity on Dynamic Load Test
(DLT)
G. P. Bernardes, C. S. Andreo & C. Gonçalves
Pile set-up in sands
J. P. Seidel & M. Kalinowski
Modeling pore pressure generation during dynamic testing of deep foundations
P. L. Pinto

5 Codes
Keynote lecture: The performance of the dynamic methods, their controlling parameters
and deep foundation specifications
S. G. Paikowsky & K. L. Steenersen
LRFD design codes for pile foundations – A review
G. G. Goble
Pile testing competitions – A critical review
J. M. Amir & B. H. Fellenius
The need for quality assurance in the dynamic pile testing industry
J.P. Seidel

High strain dynamic pile testing, equipment and practice
G. Likins, F. Rausche & G. Goble

Dynamic load testing and Statnamic load testing for acceptance and design of driven piles in Japan
T. Matsumoto, K. Fujita, O. Kusakabe, M. Okahara, N. Kawabata & S. Nishimura

Ethics and money. Are they compatible?
H. Goldemberg & J. J. Goldemberg

6 High strain dynamic testing of driven and cast in situ piles – Dynamic testing of large piles

Keynote lecture: Pile acceptance criteria for large diameter and cast in situ piles
R. F. Stevens

Analyzing the bearing capacity mechanism of large diameter diving casing cast-in-situ concrete piles by using high strain dynamic testing
Xi Liang

Analysis of dynamic load tests on steel rails piles
F. M. A. Lima, J. C. A. Cintra & N. Aoki

A discussion of penetration matching on high strain dynamic pile testing
D. Xu, S. Wu & L. Xiao

Experience gained and difficulties in performing dynamic load test in composite piles made with steel rails
G. P. Bernardes, C. S. Andreo & C. Gonçalves

The application of high strain dynamic pile testing to screwed steel piles
J. G. Cannon

Case study on the application of high strain dynamic pile testing to non-uniform bored piles
J. G. Cannon

High capacity dynamic load tests for bored piles in Sydney shale
D. J. Klingberg & P. Mackenzie

Predicting uplift deflection from dynamic pile testing
W. G. Chambers & D. J. Klingberg

Applicability of dynamic load test on a toe improved pile
J. Sakimoto, N. Kita, S. Nishimura & T. Takeda

Dynamic pile testing practice in Finland
H. Jokiniemi, J. Hartikainen & P. Korkeakoski

Driving behavior of large diameter steel pipe piles
Y.-N. Lee & J.-S. Lee
Dynamic load test of cast in place pile using a free fall hammer

Dynamic testing of large auger pile using free fall loading system in a harbour work
S.Niyama, S.Navajas & G.C.de Campos

Dynamic load test on high capacity pile socketed in basaltic rock
S.C.Paraiso, C.M.C.Costa & E.Pinto Soares

7 SPT measurements and special field monitoring test
Keynote lecture: Frequency characteristics of stress wave and penetration during SPT
K.Fujita

The application of energy conservation Hamilton's principle to the determination of energy efficiency in SPT tests
N.Aoki & J.C.A.Cintra

Correlative study of Smith damping coefficient and SPT blow count
R.Y.Liang

Stress wave theory application to standard penetration test in Japan
K.Fujita & M.Ohno

8 Vibratory pile driving – Vibration in pile driving
Keynote lecture: Vibratory driving analysis
A.E.Holeyman

Computation of ground waves due to piling
C.L.Ramshaw, A.R.Selby & P.Bettess

The effect of pile impedance on energy transfer to pile and ground vibrations
M.R.Svinkin, B.C.Roth & W.R.Hannen

Determination of modulus of subgrade reaction in a pile with a vibrating apparatus
M.Hilmi Acar

Analysis of crosswise vibration of pile driving
R.P.Chen, B.Zhu & Y.M.Chen

Monitoring and control of dynamic effects of pile installation prior to pile driving
M.R.Svinkin

Full-scale field-test study of dynamic soil resistance of vibratory driven sheet piles
K.Viking

Accelerations of a driven pile and the surrounding soil
E.L.Hajduk, S.G.Paikowsky, P.Hölscher & F.B.J.Barends

9 Statnamic and other similar techniques
Keynote lecture: Statnamic, the engineering of art
P.Middendorp
Keynote lecture: Three-dimensional finite element analysis of statnamic load test
T. Boonyatee, M. Kimura & F. Zhang

Lateral statnamic load testing of model piles
M. Kimura & T. Boonyatee

Application of the Stress Wave method to automatic signal matching and to statnamic predictions
G. Esposito, W. M. G. Courage & R. J. van Foeken

A comparative study of static, dynamic and statnamic load tests of steel pipe piles driven in sand
A. Shibata, N. Kawabata, Y. Wakiya, Y. Yoshizawa, M. Hayashi & T. Matsumoto

Case studies of statnamic load testing in Japan
S. Nishimura, T. Matsumoto, O. Kusakabe, K. Nishiumi & Y. Yoshizawa

Statnamic and dynamic load tests for large diameter steel pipe piles supported by a thin bearing layer at Nagoya port in Japan
Y. Kikuchi, S. Nishimura & M. Tatsuta

Statnamic load testing using water as reaction mass
M. D. Justason, M. C. Janes, P. Middendorp & A. G. Mullins

Introducing statnamic load testing in Europe: Case studies in the Netherlands
G. J. J. van Ginneken & P. Middendorp

The advantages and disadvantages of dynamic load testing and statnamic load testing
P. Middendorp, G. J. J. van Ginneken & R. J. van Foeken

10 Case histories, pile set-up and correlations between test methods
— Prediction reliability

Keynote lecture: Improving the reliability of pile bearing capacity prediction by the dynamic increasing energy test (DIET)
N. Aoki

Correlation analyses of dynamic and static loading tests for nine piles
Y. M. Zheng, J. M. Zheng & B. Chen

Back-analyses of steel pile driving records for quality assurance
B. R. Danziger & J. S. Ferreira

Evaluation of pile set-up from penetration per blow
G. Axelsson & S. Hintze

Comparative analysis of dynamic and static test of foundation pile
G. Zhou & J. Wu

Dynamic load test and elastic rebound analysis for estimation of the bearing capacity of piles in residual soil
P. J. R. de Albuquerque & D. de Carvalho

Strain dynamic testing on pressure-grouted piles
Liu Xi-An & Zhang Yao-Nian
Assessment of the interface between dynamic and rapid loading tests
M.B.Karkee, Y.Sugimura & T.Horiguchi

Dynamic load testing on 102 steel pipe piles for bridge foundations on mudstone
M.Hayashi, T.Matsumoto & M.Suzuki

Behavior of short CFA piles in an overconsolidated clay based on static and dynamic load tests
A.C.M.Kormann, P.R.Chamecki, L.Russo Neto, L.Antoniutti Neto & G.P.Bernardes

Static and dynamic testing of the ‘Campile’ – A displacement, cast-in-situ pile
D.J.Klingberg & P.Mackenzie

Is DLT the final word? Correlation between DLT and SLT
H.Goldemberg & J.J.Goldemberg

Results of an international pile dynamic testing prediction event
A.Holeyman, J.Maertens, N.Huybrechts & C.Legrand

Preparation of an international pile dynamic testing prediction event
A.Holeyman, J.Maertens, N.Huybrechts & C.Legrand

Case studies of dynamic load testing in Japan
Y.Wakiya, K.Nishiumi, M.Hayashi, A.Shibata, S.Nishimura & T.Matsumoto

Case studies of high capacity CFA pile testing in Australia
S.Baycan

11 Supplement

Keynote lecture: Retrospective of Sonic Integrity Tests – Its application to the control quality on piles
J.J.Goldemberg

Author index