International Symposium on

CABLE DYNAMICS

Liège (Belgium), 19-21 October 1995
TABLE OF CONTENTS

Invited speech: Modelling issues in cable structures: the Barito suspension bridge, Indonesia - A case study
Prof. M. Irvine (Australia)

STRUCTURAL MODELLING

1. On the dynamics of a traveling cable with small sag
 Ch.G. Reuter, P. Hagedorn, TH Darmstadt (Germany)
 29

2. Motion and tension waves in elastic cables
 M. Behbahani-Nejab, N.C. Perkins, The University of Michigan (U.S.A.)
 37

4. Physical and numerical simulations of ice-shedding effects on a reduced-scale model of overhead transmission line
 A. Jamaleddine, R. Beauchemin, Institut de Recherche d’Hydro-Québec (Canada)
 J. Rousselet, Ecole Polytechnique de Montréal (Canada)
 G. McClure, McGill University (Canada)
 45

5. Numerical modelling of the dynamic response of overhead transmission lines subjected to cable ice shedding
 M. Roshan Fekr, G. McClure, McGill University (Canada)
 53

6. Review of models on self-damping of stranded cables in transverse vibrations
 C. Hardy, A. Leblond, Institut de Recherche d’Hydro-Québec (Canada)
 S. Goudreau, L. Cloutier, Université Laval (Canada)
 61

7. Structural analysis of a large underwater cable array
 R.F. Zuech, D.R. Shields, Naval Facilities Engineering Service Center (U.S.A.)
 R.W. Litton, PMB Engineering Inc. (U.S.A.)
 69

8. Stable numerical solver for cable structures
 R.F. Zueck, Naval Facilities Engineering Service Center (U.S.A.)
 G.H. Powell, University of California (U.S.A.)
 77

9. The effect of hydrodynamic damping on the tension of oceanographic surface moorings
 M.A. Grosenbaugh, Woods Hole Oceanographic Institutions (U.S.A.)
 85

10. Effects of nonlinearity on the seismic behavior of cable-stayed bridges
 Chen Youping, Zhou Hongye, China Academy of Railway Sciences (P.R. of China)
 93

11. Dynamic analysis of a cable-stayed pedestrian bridge - A case study
 D. Cobo del Arco, J. Costa Vilarrasa, A. Mari Bernat, Technical University of Catalonia (Spain)
 101
12. Modelling the dynamic behaviour of catenary-pantograph systems for high speed trains
 K. Petri, J. Wallaschek, Heinz Nixdorf Institut, Universität-GH Paderborn (Germany)

13. Energy dissipation and reduction in bending stiffness in axially loaded cable under a
 constant radius of curvature
 M.S. Atali, A. Cardou, Université Laval (Canada)

14. In-plane vibration of multi-spanned transmission line system
 S. Ozono, J. Maeda, Kyushu University (Japan)

15. Analysis of conductor swinging for overhead transmission line using finite element
 method
 K. Fujii, T. Kuze, Sumitomo Electric Industries Ltd. (Japan)

NON-LINEAR CABLE DYNAMICS

16. Nonlinear interaction, bifurcation and chaos in multidegree-of-freedom cable models
 G. Rega, F. Benedettini, University of L'Aquila (Italy)

17. Nonlinear flutter in flow induced subspan oscillations
 G. Kern, A. Maitz, G. Schaffler, Technical University of Graz (Austria)

19. Nonlinear galloping of iced suspended cables with two-to-one internal resonance
 A. Luongo, Università di L'Aquila (Italy)
 G. Piccardo, Università di Genova (Italy)

20. A numerical simulation of large displacement dynamics in single and bundled cables
 G. Diana, S. Bruni, F. Fossati, R. Corradini, Politecnico di Milano (Italy)

21. Linear and nonlinear approaches to aeolian vibrations of single and bundled overhead
 conductors
 A.R.E. Oliveira, D.G. Freire, CEPEL - Electrical Energy Research Center (Brazil)

22. The study of ice shedding phenomena on transmission lines
 M. Matsuura, H. Matsumoto, The Chugoku Electric Power Co. (Japan)
 Y. Maeda, Y. Ota, Nippon Katan Co. (Japan)

23. Numerical assessment of the nonlinear behaviour of cables in structures
 D. Neuenhaus, G. Sedlacek, University of Aachen (Germany)

24. Influence of longitudinal resonance on the stability behaviour of long cables
 I. Kovács, K. Beyer, Büro für Baudynamik (Germany)
 N. Oba, Obayashi Corporation (Japan)

25. The nonlinear oscillations of inclined cables excited by periodic motions of their supports
 A. Pinto da Costa, J.A.C. Martins, Instituto Superior Técnico (Portugal)
26. On the influence of pay out rate on the dynamics of marine cables during installation
W.T. Pinto, University of Rio Grande (Brazil)
J.A. Witz, University College London (United Kingdom)

27. The application of transient analysis to submarine cable laying
M.A. Vaz, Federal University of Rio de Janeiro (Brazil)
M.H. Patel, J.A. Witz, University College London (United Kingdom)

29. The dynamics of elastic cables - Numerical simulation
F.A. Rochinha, Federal University of Rio de Janeiro (Brazil)
R. Sampaio, PUC-Rio (Brazil)

FLUID-STRUCTURE INTERACTION

Introduction: Vortex induced vibrations of cables and hawsers in water
Prof. M.S. Triantafyllou (U.S.A.)

32. Wind tunnel test on rain-wind vibration of the stay-cable
A. Honda, T. Saito, Mitsubishi Heavy Industries Co. (Japan)
T. Yamanaka, T. Fujiwara, Honshu-Shikoku Bridge Authority (Japan)

33. Determination of aerodynamic coefficients of different profiles for wind induced excitation
C. Ziller, M. Hortmanns, H. Ruscheweyh, RWTH Aachen (Germany)

34. Full-scale measurements of wind-induced vibration of transmission line system in mountainous area
Y. Momomura, Izumi Sohken Engineering Co. (Japan)
T. Ohkuma, Kanagawa University (Japan)
E. Hongo, Tokyo Electric Power Co. (Japan)
T. Okamura, Tomoe Co. (Japan)

35. An advanced model based on a probabilistic approach for predicting aeolian vibrations of single overhead conductors
A. Leblond, L. Cloutier, L. Cheng, Université Laval (Canada)
C. Hardy, Institut de Recherche d’Hydro-Québec (Canada)

36. Cable aerodynamics and its stabilization
M. Matsumoto, D. Fujii, Kyoto University (Japan)
H. Ishizaki, M. Kitazawa, Hanshin Expressway Public Corporation (Japan)
J. Aoki, JR West Japan

37. Nonlinear dynamics of a stack/cable system subjected to vortex-induced vibration
Y. Cai, S.S. Chen, Argonne National Laboratory (U.S.A.)

38. Simulation calculations of overhead transmission line galloping in Hokkaido Electric Power Co.
M. Yamaoka, T. Asoh, T. Itoh, K. Saitoh, Hokkaido Electric Power Co. (Japan)
J. Hasegawa, Hokkaido University (Japan)

39. The dynamic behavior of both line and net charges towed in water
 So Won Silas Ahn, United States Naval Academy (U.S.A.)

315

40. Accuracy of model validation with sea trial data
 J.J. Burgess, AT&T Bell Laboratories (U.S.A.)

323

41. Analysis of laboratory cable deployment experiments for payout rates in the vicinity of
 the buckling rate
 S.M. Welch, M.P. Tulin, University of California (U.S.A.)

331

42. Extreme wave induced lift wire snatch tension after landing a structure on the sea bed
 P.C. Sandvik, I.J. Fylling, Norwegian Marine Technology Research Institute (Norway)

343

43. Evaluation and comparison of the behaviour at sea and forces in cables of two types of
 offshore tension leg platforms
 A. Lejeune, J. Marchal, University of Liège (Belgium)

351

44. Evaluation of a countermeasure against wake galloping using wire connection method
 H. Satou, T. Kusakabe, Public Works Research Institute - Ministry of Construction
 (Japan)
 T. Takeda, H. Mukai, Kajima Technical Research Institute (Japan)
 K. Oikawa, SE Corporation (Japan)

359

CONTROL OF CABLE DYNAMIC RESPONSE

45. Damping mechanisms in bundled conductors of overhead transmission lines
 T. Hadulla, P. Hagedorn, W. Seemann, TH Darmstadt (Germany)

365

46. Influence of asymmetry on stockbridge damper performance
 R.J. Hooker, P.W. Dulhunty, The University of Queensland & Dulhunty Industries Pty
 Ltd. (Australia)

373

47. High voltage overhead lines - Three mechanisms to avoid bundle galloping
 J.L. Lilien, O. Chabart, University of Liège (Belgium)

381

48. Galloping suppression of a long river crossing
 You Chuanyong, Lu Mingliang, Electric Power Construction Research Institute (P.R of
 China)

391

49. Silicone insulator interphase spacer (natural mode analysis)
 A. Ozawa, J. Kagami, Tokyo Electric Power Co. (Japan)
 (Japan)

397

50. The effects of different boundary conditions on the behavior of a taut cable system
 E.B. Teodoro, Federal University of Uberlândia (Brazil)
 K.G. McConnell, Iowa State University (U.S.A.)

405

51. Controlled nonlinear motions of a suspended cable
 F. Vestroni, M. Pasca, V. Gattulli, Università di Roma "La Sapienza" (Italy)

413
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Active control of slightly-sagged cables by axial support motion</td>
<td>Y. Fujino, The University of Tokyo (Japan)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>An experiment of active control of a cable using a piezoelectric active tendon colocated</td>
<td>Y. Achkire, A. Preumont, Université Libre de Bruxelles (Belgium)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with a force sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Wind-induced vibrations of bridge stay-cables</td>
<td>T. Yoshimura, Kyushu Sangyo University (Japan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.G. Savage, National Research Council (Canada)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. Tanaka, University of Ottawa (Canada)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Control of cable vibrations with secondary cables</td>
<td>H. Yamaguchi, Saitama University (Japan)</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Aerodynamic behavior of newly proposed cable system for cable-stayed bridges</td>
<td>Y. Kubo, H. Maeda, A. Watanabe, K. Kato, Kyushu Institute of Technology (Japan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Hoshino, Kagoshima Prefecture (Japan)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Experimental study on countermeasure for man-induced vibrations of suspension structure</td>
<td>T. Hojo, S. Yamazaki, Nippon Steel Corporation (Japan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. Yamaguchi, Saitama University (Japan)</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Rain-wind-induced vibrations of steel bars</td>
<td>H. Ruscheweyh, C. Verwiebe, University of Aachen (Germany)</td>
<td></td>
</tr>
</tbody>
</table>

INDUSTRIAL POINT OF VIEW

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Full scale measurements of the behaviour of the Helgeland bridge - A cable-stayed bridge</td>
<td>K. Aas-Jakobsen, E. Jordet, S.K. Rambjor, Dr.Ing. A. Aas-Jakobsen A/S (Norway)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>located in a harsh environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>On aerodynamically stable PE-stay-cables with decreased drag force by introduction of</td>
<td>T. Miyata, H. Yamada, Yokohama National University (Japan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>newly developed lumped surface roughness</td>
<td>T. Hojo, S. Yamazaki, Nippon Steel Corp. (Japan)</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>The stays, their dynamic behaviour, their equipments - Bridges at Ben-Ahin, Wandre and</td>
<td>J.-M. Cremer, Bureau d'Etudes Greisch s.a. (Belgium)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>upon Alzette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Cable-stayed bridge at Val-Benoît - Aerodynamic stability - Simulations and tests in wind</td>
<td>J.-M. Cremer, V. de Ville de Goyet, A. Lothaire, V. Radu, Bureau d'Etudes Greisch s.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tunnel</td>
<td>(Belgium)</td>
<td></td>
</tr>
</tbody>
</table>

64. Cable self-damping measurement using progressive waves
 M. Sanglard Torres, F. de Souza Midao, CEPEL/ELETROBRAS (Brazil)
 A. Palmeira Ripper Neto, M. Zindeluk, Federal University of Rio de Janeiro (Brazil)

65. Industrial control of dynamic phenomena on overhead transmission lines in Belgium
 M. Wolfs, Laborelec (Belgium)
 M. Couvreur, Electrabel (Belgium)
 J. Rogier, Tractebel (Belgium)

66. Improved reliability of overhead lines by controlling the aeolian vibrations of conductors
 M. Wolfs, Laborelec (Belgium)
 P. Mouchard, Calea (France)
 W. Buckner, Consult. Eng. (Germany)

67. On laboratory measurements of damping and bending stiffness of the conductors of overhead transmission lines
 U. Gutzer, P. Hagedorn, TH Darmstadt (Germany)

68. Wide area network system of wind measurement utilizing power transmission line systems
 J. Maeda, Kyushu University (Japan)
 N. Tomonobu, F. Miyazaki, Kyushu Electric Power Co. (Japan)

69. Anti-galloping design for overhead power transmission - Design of conductor spacing
 T. Okamura, K. Nagatomi, H. Fujii, H. Ito, Sumitomo Electric Industries Ltd. (Japan)

70. Galloping phenomena of large bundle conductors observed on the full scale test line
 T. Yukino, M. Adachi, Kansai Electric Power Co. (Japan)
 K. Fujii, Sumitomo Electric Industries Ltd. (Japan)
 I. Hayase, Nippon Katun Co. (Japan)

71. Simulating the dynamic behaviour of electrical lines for high-speed trains on parallel computers
 G. Poetsch, J. Wallaschek, Heinz Nixdorf Institut, Universität-GH Paderborn (Germany)

72. Design and realization of an ultrasonic vibration sensor associated with a specific bench to study the dynamics of HV transmission lines - Applications
 L. Gaillard, Dervaux s.a. (France)
 R. Nasri, D. Bergogne, L. Jorat, J. Monin, Université Jean Monnet (France)

73. Probabilistic evaluation of overhead conductor aeolian vibration performance
 I. Kromer, Institute for Electric Power Research Co. (Hungary)

74. Finite element analysis and testing on braking systems composed of nets
 E. Vivet, Ch. Bardet, Aérospatiale (France)

Anhang: The Dynamics of Cables in Wind

Alan C. Davenport