CHAPTER 9 - SEPARATION AND CLASSIFICATION

• A DE-DUSTING DEVICE FOR REMOVING FINES FROM PELLETS AND GRANULES
 S.R. de Silva and F.O. von Hafenbradl
 1. Telemark University College, NORWAY
 2. Telemark Technological R&D Centre, NORWAY .. 9.1

• DRY TRIBOSEPARATION: A NEW TECHNOLOGY FOR POWDER MATERIALS SEPARATION
 B. Eiderman, M. Voskoboinik, H. Levy and M. Soskine
 SORTECH Separation Technologies Ltd., ISRAEL .. 9.9

• PARTICLE SURFACE INSPECTION WITH FOURIER-WAVELETS TRANSFORM
 M. Takei, H. Li, M. Ochi, Y. Saito and K. Horii
 1. Nihon University, Tokyo, JAPAN
 2. Kagoshima University, Kagoshima, JAPAN
 3. Hosei University, Tokyo, JAPAN
 4. Shirayuri College, Tokyo, JAPAN .. 9.15

• ASSESSMENT OF A MULTISTAGE GRAVITY SEPARATION IN TURBULENT AIR FLOW
 J. Tomas and T. Groger
 The Otto-von-Guericke-University Magdeburg, GERMANY ... 9.20

• EFFICIENCY OF PARTICULATE SOLIDS REDISTRIBUTION AS THE PARAMOUNT DIRECTION FOR SCREENING EFFICIENCY RISE
 V. Grozubinsky and E. Sultanovich
 A.S.T. Advanced Screening Technologies Ltd., ISRAEL .. 9.28

• DISPERSION STRUCTURE OF MIXES OF PARTICULATE SOLIDS
 G. Efremov
 Kosigin State Textile University of Moscow, RUSSIA .. 9.35

CHAPTER 10 - PNEUMATIC CONVEYING

• DENSE PHASE (PLUG) CONVEYING – OBSERVATIONS AND PROJECTIONS
 G.E. Klinzing
 University of Pittsburgh, USA .. 10.1

• MODELLING THE UNSTABLE BOUNDARY FOR LOW-VELOCITY SLUG-FLOW PNEUMATIC CONVEYING
 J. Yi and P.W. Wypych
 University of Wollongong, AUSTRALIA ... 10.11

• GRANULAR JUMP IN LOW VELOCITY PNEUMATIC CONVEYING OF SOLID PARTICLES IN A HORIZONTAL PIPELINE
 Y. Tomita, K. Funatsu and S. Harada
 Kyushu Institute of Technology, JAPAN ... 10.18

• EXPERIMENTAL INVESTIGATION OF LOW-VELOCITY SLUG-FLOW IN A HORIZONTAL PIPELINE
 D.B. Hastie, R. Pan, P. Wypych and P.R. Guiney
 1. University of Wollongong, AUSTRALIA
 2. University of Newcastle, AUSTRALIA ... 10.24
• PRESSURE DROP OF SLUGS IN THE UNSTABLE ZONE OF PNEUMATIC CONVEYING
 R. Pan¹ and P.W. Wypych²
 1. University of Newcastle, AUSTRALIA
 2. University of Wollongong, AUSTRALIA ... 10.31

• A MODEL FOR NON-SUSPENSION GAS-SOLIDS FLOW OF FINE POWDERS IN PIPES
 D.J. Mason¹ and A. Levy²
 1. Glasgow Caledonian University, UK.
 2. Ben-Gurion University of the Negev, ISRAEL .. 10.37

• THE PROBLEM WITH DILUTE-PHASE PNEUMATIC CONVEYING
 P.W. Wypych
 University of Wollongong, AUSTRALIA ... 10.45

• A NUMERICAL STUDY OF GAS-SOLIDS FLOW THROUGH INCLINED PIPES USING
 THE DISTINCT ELEMENT METHOD
 D.J. Mason¹, J. Li¹ and A. Levy²
 1. Glasgow Caledonian University, UK
 2. Ben-Gurion University of the Negev, ISRAEL .. 10.59

• LATEST DEVELOPMENT OF THE DIRECT TECHNIQUE FOR MEASUREMENT OF THE
 PNEUMATIC CONVEYING CHARACTERISTICS OF BULK MATERIALS
 M.S.A. Bradley, L.M. Hyder and R.J. Farnish
 University of Greenwich, UK .. 10.66

• THE DESIGN OF PIPELINE SYSTEMS FOR TRANSPORTING ICE INTO DEEP MINES
 T.J. Sheer¹, R. Ramsden² and M. Butterworth³
 1. University of the Witwatersrand, Johannesburg, SOUTH AFRICA
 2. Bluhm Burton Engineering (Pty) Ltd., SOUTH AFRICA
 3. CSIR Mining Technology, SOUTH AFRICA ... 10.75

• EXPERIMENTAL STUDIES ON PNEUMATIC CONVEYING OF WET SNOW
 T. Kobayashi¹ and Y. Nohguchi²
 1. Nagaoka Institute of Snow and Ice Studies, JAPAN
 2. Atmospheric and Hydroscopic Science Division, JAPAN 10.81

• PNEUMATIC CONVEYING UNDER EXTREME CONDITIONS
 H.-J. Roski
 Deutsche Montan Technologie GmbH, GERMANY ... 10.87

• NUMERICAL SIMULATION OF SOLIDS FEEDING IN A GAS-SOLIDS PNEUMATIC
 TRANSPORT SYSTEM
 D.J. Mason, J. Li and P. Marjanovic
 Glasgow Caledonian University, UK ... 10.93

• THE USE OF HIGH PRESSURE BLOW TANKS FOR THE PNEUMATIC CONVEYING OF
 PELLETISED MATERIALS
 D. Mills
 Pneumatic Conveying Consultant, UK .. 10.102

• A NOVEL ANALYTICAL MODEL FOR THE ACCELERATION OF PARTICLES FOLLOWING
 BENDS IN PNEUMATIC CONVEYING SYSTEMS
 M.S.A. Bradley, R.J. Farnish and L.M. Hyder
 University of Greenwich, UK ... 10.108

• THE INFLUENCE OF A BEND ON THE FLOW CHARACTERISTICS IN PNEUMATIC
 CONVEYING SYSTEMS
 A. Levy
 Ben-Gurion University of the Negev, ISRAEL ... 10.118
CHAPTER 11 - PARTICLE FLOW

- PNEUMATIC CONVEYING WITH TURBUFLOW®-ADVANTAGES AGAINST CONVENTIONAL DENSE PHASE CONVEYING
 M. Geweke and U. Gade
 1. Johannes Moller Hamburg Engineering GmbH, GERMANY
 2. VEAG Vereinigte Energiewerke AG, GERMANY ... 10.124

- FLUIDSTAT®: LOW VELOCITY CONVEYING OF COAL-FIRED BOILER FLY ASH
 G. Pavoni
 Hamon Research-Cottrell Italia S.p.A., ITALY ... 10.130

- THE APPLICATION OF LOW VELOCITY SLUG FLOW IN PNEUMATIC UNLOADER
 H.X. Chen¹, R. Pan² and Q. Xu¹
 1. The Ministry of Communications, CHINA
 2. The University of Newcastle, AUSTRALIA ... 10.137

- MESOSCOPIC NATURE OF GRANULAR FLOWS
 I. Goldhirsch
 Tel-Aviv University, ISRAEL ... 11.1

- SPIRAL FLOW AND ITS INDUSTRIAL APPLICATIONS
 K. Horii
 Shirayuri College, JAPAN ... 11.11

- NUMERICAL AND EXPERIMENTAL STUDIES FOR THE IMPACT OF PROJECTILES ON GRANULAR MATERIALS
 K. Tanaka, M. Nishida, T Kunimochi and T. Takagi
 Nagoya Institute of Technology, JAPAN ... 11.21

- ON GAS-SOLID INTERACTIONS IN THE FLOW OF GRANULAR MATERIAL DOWN A CHUTE
 Y. Zhang and J.M. Reese
 University of Aberdeen, UK 11.27

- DEVELOPMENT OF A SIMULATION MODEL OF RAPID GRAVITY FLOWS OF PARTICULATE SOLIDS ON A ROUGH CHUTE
 V.N. Dolgunin, V.J. Borschov and P.A. Ivanov
 Tambov State Technical University, RUSSIA ... 11.33

- INLET CONDITIONS EFFECT ON THE NUMERICAL SOLUTIONS OF PARTICLE-GAS FLOWS, A PARAMETRIC STUDY
 M. Haim, Y. Weiss and H. Kalman
 Ben-Gurion University of the Negev, ISRAEL ... 11.38

- EFFECTS OF PARTICLE COLLISIONS ON THE SCALING OF FLUIDIZED SYSTEMS
 M. Swanson, M. Detamore, and C. Hrenya
 University of Colorado, USA ... 11.45

- THEORETICAL AND EXPERIMENTAL STUDY ON CHOKING PHENOMENON OF GAS-PARTICLE FLOW
 S.M. Tan, A.H. Liu and Z.S. Zou
 Northeastern University, CHINA ... 11.51
• THEORETICAL STUDY ON THE BEHAVIORS OF GAS-PARTICLE FLOW IN THE DIVERGENT PART OF DE LAVAL NOZZLES
 X.F. Dong¹, T. Han², X.G. Xiao³, Z.S. Zou¹ and Y.C. Peng³
 1. University of New South Wales, AUSTRALIA
 2. Ben-Gurion University of the Negev, ISRAEL
 3. Northeastern University, CHINA .. 11.58

• LIVE BED TRANSPORT OF GRANULAR MATERIALS
 D.M. Hanes
 The University of Florida, USA .. 11.64

• MODELING OF GRANULAR MATERIAL FLOW
 J. Zegzulka
 VŠb-Technical University Ostrava, CZECH REPUBLIC 11.65

CHAPTER 12 – HYDRAULIC CONVEYING

• DEPOSITION VELOCITIES FOR SLURRY FLOWS
 C.A. Shook and R.J. Sumner
 University of Saskatoon, CANADA .. 12.1

• PARTICLE MOTION IN SHEARED NON-NEWTONIAN MEDIA
 K.C. Wilson
 Queen's University at Kingston, CANADA 12.9

• LAMINAR AND TURBULENT FLOW OF DENSE KAOLIN AND ASH HYDROMIXTURES
 P. Vlasak and Z. Chara
 The Academy of Sciences of the Czech Republic, CZECH REPUBLIC .. 12.14

• SOLIDS DISTRIBUTION IN PIPELINE FLOWS OF HIGHLY CONCENTRATED SAND-WATER MIXTURES
 V. Matousek
 Delft University of Technology, THE NETHERLANDS 12.20

• RHEOLOGICAL CHARACTERIZATION OF INDUSTRIAL MINERALS SLURRIES
 A. de Pretis, A. Papo and L. Piani
 Università degli Studi di Udine, ITALY 12.26

• AUTOMATED AND RHEOLOGICALLY CONTROLLED MAKE-UP OF SLURRY AND PASTE FOR BACKFILL AND BUILDING MATERIAL APPLICATION
 E.W. Hollinderbäumer
 Deutsche Montan Technologie GmbH, GERMANY 12.32

• NET POSITIVE SUCTION HEAD REQUIREMENT FOR CENTRIFUGAL SLURRY PUMPS
 L. Whitlock¹, A. Seilgren² and K. Wilson³
 1. GIW Industries Inc., USA
 2. Lulea University of Technology, SWEDEN
 3. Queen's University, CANADA .. 12.38

• SLURRY AND TIP CLEARANCE EFFECTS ON A CENTRIFUGAL PUMP PERFORMANCE USED IN HYDRAULIC TRANSPORTATION SYSTEMS
 T. Engin, M. Gür and İ. Çalı
 University of Sakarya, TURKIE .. 12.44
CHAPTER 13 - CAPSULE CONVEYING AND FREIGHT PIPELINE

- PNEUMATIC CAPSULE PIPELINES IN JAPAN AND FUTURE DEVELOPMENTS
 S. Kosugi
 Sumitomo Metal Industries, Ltd., JAPAN .. 13.1

- A CONTRIBUTION TO HYDROTRANSPORT OF CAPSULES IN BEND AND INCLINED PIPELINE SECTIONS
 P. Vlasak¹ and V. Berman²
 1. Institute of Hydrodynamics ASCR, CZECH REPUBLIC
 2. Institute of Hydromechanics NAU, UKRAINE .. 13.7

- DRAG REDUCTION IN HYDRAULIC CAPSULE PIPELINES
 T.R. Marrero and G.S. Kuhlman
 University of Missouri – Columbia, USA .. 13.13

- PAST, PRESENT AND THE FUTURE OF FREIGHT PIPELINE INDUSTRY
 R. Marcus¹ and I. Zandi²
 1. Synergy Consulting (PTY) Ltd., SOUTH AFRICA
 2. University of Pennsylvania, USA ... 13.20

- RESEARCH OF HYDROTRANSPORTATION OF THE BOTTLES
 A. Jvarsheishvili, D. Robakidze, I. Doreuly and L. Shatakishvili
 Georgian Technical University, GEORGIA ... 13.21

CHAPTER 14 - MECHANICAL CONVEYERS AND FEEDERS

- RECENT DEVELOPMENTS IN FEEDER DESIGN AND PERFORMANCE
 A.W. Roberts
 University of Newcastle, AUSTRALIA ... 14.1

- VERTICAL SCREW CONVEYORS. ANALYSIS OF WORK AND DESIGN CALCULATIONS
 D. Schlesinger and A. Papkov
 Dafna Eng. Ltd., ISRAEL .. 14.11

- FLAT BELT BULK MATERIAL FEEDER ACCURACY
 K.A. Alexeff and W. E. Downs
 Stock Equipment Company, USA .. 14.17

- RECENT DEVELOPMENTS IN THE BELT CONVEYING OF BULK SOLIDS
 A.W. Roberts
 University of Newcastle, AUSTRALIA .. 14.24

- LONG DISTANCE OVERLAND CONVEYING - THE ADVANTAGES OF CABLE HAULED CONVEYING AND COLLABORATIVE PARTNERING
 G. Thomas
 JLV Industries Pty. Ltd., AUSTRALIA .. 14.30

- PUTTING THE PEDAL TO THE METAL
 S. Kubo, G. Lodewijks and A. Neuman
 Conveyor Experts B.V., THE NETHERLANDS .. 14.37

- CORELESS SCREW CONVEYORS
 A. Atlas
 Makhteshim, Chemical Works, Ltd., ISRAEL ... 14.43
CHAPTER 15 - MEASUREMENT

- APPLICATION OF TOMOGRAPHIC TECHNIQUES FOR IMAGING FLUIDIZED BEDS
 T. Dyakowski and A.J. Jaworski
 UMIST, UK ... 15.1

- MEASURING THE PHASE DISTRIBUTION IN A TRANSIENT GAS-SOLID FLOW USING CAPACITANCE TOMOGRAPHY
 T. Loser¹, M. Geweke² and D. Mewes¹
 1. Universität Hannover, GERMANY
 2. Johannes Möller Hamburg Engineering GmbH, GERMANY ... 15.11

- ELECTRICAL TOMOGRAPHY TECHNIQUES FOR MULTIPHASE FLOW APPLICATIONS
 R.C. Waterfall¹, W.W. Loh¹, Arko¹, J. Cory¹ and G.P. Lucas¹
 1. UMIST, UK
 2. University of Huddersfield, UK .. 15.17

- EFFECT OF MASS LOADING ON GAS-SOLIDS MOTION AND PARTICLE SEGREGATION PATTERNS
 E.N. Jones, C.U. Yurteri and J.L. Sinclair
 Purdue University, USA ... 15.26

- VISUALISATION AND ANALYSIS OF DENSE PHASE POWDER CONVEYING FOR REAL - TIME MEASUREMENT AND CONTROL
 K.L. Ostrowski¹, M.A. Bennett¹, R. A. Williams¹ and S.P. Luke²
 1. University of Leeds, UK
 2. University of Exeter, UK ... 15.32

- MEASUREMENT OF THE DYNAMIC BEHAVIOR IN DISCHARGING SILOS USING OPTICAL FLOW ANALYSIS
 M. Ostendorf, J. Theuerkauf and J. Schwedes
 Technical University of Braunschweig, GERMANY .. 15.41

- ON-LINE SEDIMENTATION KINETICS MONITOR
 D. Kanugasha and H. Mahgerefteh
 University College London, UK .. 15.47

- APPLICATION OF ELECTRICAL TOMOGRAPHY TO PARTICULATE PROCESSES
 R.A. Williams
 University of Leeds, UK .. 15.54

CHAPTER 16 - ENVIRONMENTAL ASPECTS

- DUST GENERATION AND CONTROL IN CONVEYING OF POWDERS: REALITY, TECHNOLOGY AND HUMAN ATTITUDE
 M.E. Fayed
 Ryerson Polytechnic University, CANADA ... 16.1

- EFFECT OF DUST CONCENTRATION ON A PREHEATER CYCLONE IN PARTICULATE TRANSPORT FOR CEMENT PROCESS
 V. Ars, M. Gär, T. Engin and I. Çalh
 University of Sakarya, TURKIE .. 16.12

- ELIMINATING FUGITIVE DUST AND SPILLAGE IN CONVEYING - ITS APPLICATION IN THE EUROPEAN PULP AND PAPER INDUSTRY
 R. Johansson
 Sicon Roullunds AB, SWEDEN .. 16.16
INFLUENCE OF INTERPARTICLE FORCES ON POROSITY AND PERMEABILITY OF FILTER CAKES
Th. Neesse, J. Dueck and E. Zvetanov
University Erlangen-Nuremberg, GERMANY .. 16.21

EVALUATION OF AIR POLLUTION LEVEL BY MEANS OF A MULTILAYER PERCEPTRON
W. Kaminski
Technical University of Lodz, POLAND ... 16.27

DUST EXPLOSION HAZARD CONSIDERATIONS FOR MATERIALS HANDLING PLANTS AND PROCESSES
P.W. Wypych
University of Wollongong, AUSTRALIA ... 16.33

PRODUCT CONTAINMENT AND STATIC SAFETY WHEN HANDLING VOLATILE POWDERS IN FIBCs
M.B. Ranson
Spiroflow Limited, UK ... 16.40

MECHANISM OF COLLECTION OF AEROSOLS BY AN ARRAY OF OPPOSITELY CHARGED DROPS
S. Kojevnikova and Y. Zimmels
Technion-Israel Institute of Technology, ISRAEL ... 16.45

RACEMIC LACTIC ACID SEPARATION BY HOLLOW FIBER SUPPORTED LIQUID MEMBRANE EXTRACTION
P. Hadík¹, L.-P. Szabó² and E. Nagy¹
1. Pannon University of Agricultural Sciences, HUNGARY
2. University of Veszprém, HUNGARY ... 16.53