Composite Materials For Offshore Operations – 3

Edited by:

S. S. Wang
Composites Engineering and Applications Center (CEAC)
For Petroleum Exploration and Production
University of Houston
Houston, Texas

J. G. Williams
Composites Engineering and Applications Center (CEAC)
For Petroleum Exploration and Production
University of Houston
Houston, Texas

K. H. Lo
Shell Global Solutions U.S.
Houston, Texas
Table of Contents

Preface
S. S. Wang and J. G. Williams, *University of Houston, CEAC*
K. Him Lo, *Shell International Exp. and Products*

I. Keynote Papers

1.1 Progress Challenges and Opportunities in the Application of Composites Offshore
K. Him Lo, *Shell International Exp. and Products*
Jerry G. Williams, *University of Houston, CEAC*
Metin Karayaka, *Aker Engineering*
Mamdouh M. Salama, *Conoco*

1.2 Composites Utilization On a SPAR Platform- Potential Economic Impact and Technical Gaps
T.M. Hsu, *Chevron*
Jim Skogsberg, *Chevron*
Metin Karayaka, *Aker Engineering*

1.3 Opportunities in the Deepwater Gulf
Robert Peterson, *Minerals Management Service*

1.4 Highlights and Advances in the ARP Composites Offshore Program
A. Geoff Gibson, *University of Newcastle upon Tyne*

II. Certification Issues

2.1 HSE Perspective on Composites Utilization Offshore
Raman Patel – *HSE*

2.2 USCG Perspective on the Use of Composite Materials Within the Marine and Offshore Oil and Gas Industry
Lt. Kevin Oditt, *USCG*
III. Current Development in Composite Risers

3.1 Composite Catenary Riser
Lars Slagsvold, ABB Offshore Systems
Ole A. Gryta, ABB Offshore Systems

3.2 Composite Production Riser Development and Qualification Test Results
Douglas B. Johnson, Lincoln Composites
Donald D. Baldwin, Lincoln Composites
K. Him Lo, Shell International Exploration and Production

3.3 Composite Choke and Kill Line Development and Test Results
Douglas B. Johnson, Lincoln Composites
Donald Baldwin, Lincoln Composites
Louis Slaughter, Stewart & Stevenson

3.4 New Developments in High Strength Composite Materials for Lightweight Offshore Flexible Risers
Anh Tuan Do, Coflexip Stena Offshore
Olivier Beaudoin, Coflexip Stena Offshore
Pierre Odru, Institut Francais du Petrole
Francois Grosjean, Institut Francais du Petrole

3.5 Flexible Pipe Continues to Pioneer Ultra Deep Water Flowline & Riser System Solutions
Mark Kalman, Bres – Wellstream
Ben Chen, Bres – Wellstream
Cobie Loper, Bres – Wellstream
Justin Tuohy, Bres – Wellstream

3.6 Development of Composite Riser Design Guideline
Andreas T. Echtermeyer, Det Norske Veritas
Bryan Hayman, Det Norske Veritas

IV. Composite Riser/Tubular Analysis and Design

4.1 Methodology for Composite Riser Design Lifetime Prediction and Product Qualification
Eric Pierce– ABB Vetco Gra
Dirk Huybrechts – ABB Corp. Res.,

4.2 Vortex –Induced Vibrations (VIV) of Composite Production Risers
S.S. Wang, University of Houston, CEAC
X. Lu, University of Houston, CEAC
T.P. Yu, University of Houston, CEAC
4.3 A General Discussion on Riser Composite/Metal Interface Design and Analysis
Donald Baldwin, *Lincoln Composites*
K. Him Lo, *Shell Int. Exp. and Prod.*

4.4 Pipe and Coupling Design Methodology for Reinforced Thermoplastic Pipe (RTP)
Ben Chapman, *BRES, Wellstream*
Justin Tuohy, *BRES, Wellstream*
Graeme Bulmer, *BRES, Wellstream*
Geoff Bolam, *BRES, Wellstream*
Mark Kalman, *BRES, Wellstream*
Terry Sheldrake, *BRES, Wellstream*
Colin Soens, *BRES, Wellstream*

4.5 Structural Integrity of Steel-Strip Laminate (SSL) Composite Pipe for High Pressure Applications: Deformation, Failure Prediction, and Design Verification
S.S. Wang, *University of Houston, CEAC*
X. Lu, *University of Houston, CEAC*
A. Miyase, *University of Houston, CEAC*
X. Chen, *University of Houston, CEAC*

V. FRP Pipe Performance

5.1 FRP Pipe Fire Performance: Modeling and Testing
J.M. Davies, *University of Manchester*
D. Dewhurst, *University of Manchester*
H-B Wang, *University of Manchester*

5.2 High Temperature Failure Envelop of Composite Tubular
J.M. Hale, *University of Newcastle upon Tyne*
S.D. Speake, *University of Newcastle upon Tyne*
A.G. Gibson, *University of Newcastle upon Tyne*

5.3 Development of Heat-Activated Coupling for Composite Pipe Systems
Su -Seng Pang, *LSU*
Guoqiang Li, *LSU*
Richard Lea, *Edo Specialty Plastics*
Randy A. Jones, *Edo Fiber Science*
Michael A. Stubblefield, *Southern University*
5.4 Impact Damage Assessment of GRP Pipes
S.R. Reid, *UMIST*
S. Li, *UMIST*
P.D. Soden, *UMIST*
Z. Zou, *UMIST*

5.5 Long-Term and Short-Term Leakage Strength of Composites Pipes
S.R. Reid, *UMIST*
P.D. Soden, *UMIST*
J.N. Ashton, *UMIST*
A. Shahady, *UMIST*
J. Katramados, *UMIST*

5.6 Application of Non–Metallic Materials for Oil and Gas Transportation – Qualification Issues
Simon Frost, *Shell*

VI. Spoolable Composite Tubular Technology

6.1 Field Experience in the Application of Spoolable Carbon Fiber Pipe
Joel Shaw, *Hydril Composites*
Tom Walsh, *Hydril Composites*
Chris Lundberg, *Hydril Composites*
Harris Reynolds, *Hydril Composites*

6.2 Changing the Paradigm with Spoolable Composite Pipe
Hampton Fowler, *Fiberspar Spoolable Products*
Mike Feechan, *Haliburton Energy Services*

6.3 Analytical Solution for the Design of Spoolable Composite Tubing
J. Michael Starbuck, *Oak Ridge National Laboratory*
Cliff Eberle, *Oak Ridge National Laboratory*

6.4 High Speed Processing of Thermoplastic Composites for Oilfield Pipe And Tubular Applications
James Mondo, *Automated Dynamics*
David Hauber, *Automated Dynamics*
Robert Langone, *Automated Dynamics*
Lawrence Quinn, *Automated Dynamics*

6.5 Guidelines for Reinforced Thermoplastic Pipe in the Oil and Gas Industries
Simon Frost, *Shell*
A. Geoff Gibson, *University of Newcastle upon Tyne*
VII. Composite Offshore Structures & Applications 431

7.1 Regulatory Barriers to New Candidate Materials Introduction
Joie Folkers, Ameron International

7.2 Petrobras Composite Topside Applications
Guilherme A. Pessoa, CENPER/Petrobras
G.D. Ribeiro, CENPER/Petrobras
Otavio L. Farias, Petrobras/E&P

7.3 Alternative/Innovative Structural Concepts for Offshore Topside Composite Structures
Antonio Miravete, University of Houston, CEAC

7.4 Performance of Fire Resistant Structural Beams and Gratings
Bruce Nelson, Strongwell
Clint Smith, Strongwell
Tom Carlson, Strongwell

7.4 Codes and Standards for Composite Tanks and Vessels: A General Discussion
Douglas B. Johnson, Lincoln Composites
Norman L. Newhouse, Lincoln Composites
Donald D. Baldwin, Lincoln Composites
K. Him Lo, Shell Int. Exp. and Prod.

VIII. Mooring Ropes and Tethers 493

8.1 Petrobras Experiences With Deepwater Polyester Moorings
Cesar del Vecchio, Petrobras Research Center, CENPES
Luis Claudio S. Costa, Petrobras Research Center, CENPES
Luis Claudio M. Meniconi, Petrobras Research Center, CENPES

8.2 Deepstar Program on Synthetic Fiber Mooring Ropes
Paul Devlin, Texaco

8.3 Polyester Mooring Installation Considerations
Tom Fulton, Aker Marine Contractors
Colin Ocker, Aker Marine Contractors

8.4 Polyester Rope Mooring Field Trial in Water Depth of 6200 Feet
Hongbo Xu, Shell
David Loeb, Shell
Billy Bergeron, Delmar Systems
8.5 Design Drivers for Deepwater Mooring System Selection
Shukai Wu, Aker Engineering
Hans Treu, Aker Marine Contractors

8.6 Development and Qualification of Carbon Fiber Composite Tethers for Deepwater TLP's
Mamdouh M. Salama, Conoco

IX. Composite Material Response and Modeling

9.1 Fatigue Behavior of Composites in Offshore Environments
George Kotsikos, DERA Rosyth
J.T. Evans, DERA Rosyth
A. G. Gibson, U. of Newcastle Upon Tyne

9.2 Durability of Non-Crimp Fabric Composites in Aqueous Environment
P.J. Hogg, Queen Mary & Westfield College
F. Smith, Queen Mary & Westfield College
H. Winkler, Queen Mary & Westfield College
A. Yoosfinejad, Queen Mary & Westfield College

9.3 Carbon Fiber Property Translation Into Composite – A Comparison of Commercial Grade 48K Carbon Fibers versus 12K Aerospace Fibers
Paul Walsh, Zoltek Corp.
Rich Dropek, Composites Professionals
Ron Roser, Entec Composite Machines

9.4 New Design Guidelines and Acceptance Criteria for Composites Offshore
Andreas T. Echtermeyer, Det Norske Veritas

9.5 Static Electricity and the Use of GRP Materials Offshore
Phil Medlicott, Phil Medlicott Ltd.
Claes-Goran Gustafson, Norwegian University of Science and Technology
Turid Storhaug, Kvaerner Oilfield Products

X. Emerging Technology

10.1 FRP Reinforcement for Offshore Structures
Charles W. Dolan, University of Wyoming
H.R. Hamilton, University of Wyoming

10.2 Automated Filament Winding of Large, Complex Shapes
James L. Gilchrist, Smith Fiberglass Products
10.3 An Emerging Composite Technology From Civil Industrial Application to Offshore Operations 673
 David Johnson, Ebert Composites
 H. Felix Wu, NIST

10.4 Repair of Steel Pipework Using Composites 681
 Bjorn Melve, Statoil

10.5 Analysis of Flexible Pipe Nylon – 11 Liner 697
 Jaime Chang, Shell International Exploration and Production
 W.J. Newman, Shell International Exploration and Production

10.6 Multiaxial Yielding Behavior and Elastoplastic Collapse Modeling of Thermoplastic Liners 709
 S.S. Wang, University of Houston, CEAC
 T.P. Yu, University of Houston, CEAC
 A. Selvarathinam, University of Houston, CEAC
 J.F. Mason, Atofina Chemical

Appendix A CMOO-3 Conference Summary 729

Appendix B Conference Organization 731

Appendix C Conference Co-Sponsors 733

Appendix D Author Index 735