Front Cover: The front cover shows an illustration of the view_hdf software package as described in poster P1.2, entitled, "View_HDF: Visualization and Analysis Software for HDF Files" on page 340 of this preprint volume. The view_hdf tool was developed at the NASA Langley Research Center by the Clouds and the Earth's Radiant Energy System (CERES) Data Management Team for use with CERES instrument data sets. View_hdf is written using Research Systems Inc. Interactive Data Language (IDL) and can be used for visualization and analysis of files stored in Hierarchical Data Format (HDF), a portable, self-documenting file format developed by the National Center for Supercomputing Applications at the University of Illinois. The view_hdf tool is available from the NASA Langley Atmospheric Sciences Data Center at http://eosweb.larc.nasa.gov.

The plots show different parameters from two of the CERES data products overlaid on the view_hdf main menu screen. The plot in the upper right shows the monthly average by day of total sky longwave flux (Wm-2) on a 2.5 degree regional grid for August 1998 from the CERES ES-4 data product. The lower plot shows shortwave flux at the top of the atmosphere (Wm-2) from the CERES ES-8 daily product for 24 March 1999 in the region of the Indian Ocean Experiment.

Cover design is by Kam-Pui Lee of Science Applications International Corporation and Goly Miamee of Computer Sciences Corporation at the NASA Langley Research Center in Hampton, Virginia.
# Table of Contents

16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

## Session 1: Interdisciplinary Applications

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SESSION 1: INTERDISCIPLINARY APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>520</td>
<td>INTRODUCTION AND OVERVIEW. Floyd Hauth, IIPS Program Chairperson, USAF (retired), Osceola Mills, PA</td>
</tr>
<tr>
<td>1</td>
<td>THE KILLER TORNADO OUTBREAK OF 3 MAY 1999: APPLICATIONS OF OK-FIRST IN RURAL COMMUNITIES. Kenneth C. Crawford, Oklahoma Climatological Survey, Univ. of Oklahoma, Norman, OK; and D. A. Morris</td>
</tr>
<tr>
<td>4</td>
<td>MANAGING WEATHER-RELATED DIVERSIONS THROUGH AUTOMATED DETECTION. Gary W. Lucas, Sonalysts, Inc., Waterford, CT; and K. A. Lucas</td>
</tr>
<tr>
<td>8</td>
<td>THE STAND ALONE WEATHER SENSORS (SAWS) SYSTEM: AN FAA PROGRAM FOR REPLACEMENT AND BACKUP OF CRITICAL WEATHER OBSERVATIONS AT SERVICE LEVEL &quot;C&quot; AIRPORTS AND FLIGHT SERVICE STATIONS. Matoka W. Forbes, FAA, Washington, DC; and D. Strawbridge, T. A. Seliga, M. Guidry, and D. Bryan</td>
</tr>
<tr>
<td>12</td>
<td>TACMET—A COMMERCIAL, VERSATILE AUTOMATED WEATHER OBSERVATION SYSTEM FOR DEMANDING TACTICAL MILITARY NEEDS. Selwyn L. Alpert, Vaisala, Inc., Helsinki, Finland and Woburn, MA; and H. Kokko</td>
</tr>
<tr>
<td>16</td>
<td>SCALABILITY AND MODULARITY OF WEATHER/AVIATION IIPS. P. Joshua Rovero, Sonalysts, Inc., Waterford, CT</td>
</tr>
<tr>
<td>19</td>
<td>USING FILTERING THEORY TO PREDICT LIGHTNING STRIKES. Scott J. Brunza, Sonalysts, Inc., Waterford, CT; and C. R. Coleman, Jr. and J. M. Jakacky, Jr.</td>
</tr>
<tr>
<td>21</td>
<td>FORECAST UTILIZATION OF VIDEO CAMERA TECHNOLOGY. Brian McInerney, NOAA/NWSFO, Salt Lake City, UT; and A. Horvitz</td>
</tr>
<tr>
<td>25</td>
<td>NOAA PORTS AND COASTAL FORECASTING. Stephen Gill, NOAA/NOS, Silver Spring, MD; and F. Klein</td>
</tr>
<tr>
<td>1.10</td>
<td>PAPER WITHDRAWN</td>
</tr>
<tr>
<td>25</td>
<td>UTILIZING LDAD'S EMERGENCY MANAGER DECISION SUPPORT SYSTEM FOR EMERGENCY RESPONSE ACTIVITIES. Deborah A. Miller, NOAA/FSL, Boulder, CO; and M. Kelsch, G. M. Levy, and L. J. Angus</td>
</tr>
<tr>
<td>29</td>
<td>ENHANCING THE GRID ANALYSIS &amp; DISPLAY SYSTEM (GrADS) TO READ HDF-EOS DATA. Don K. Hooper, CIRES/Univ. of Colorado and NOAA/CDC, Boulder, CO</td>
</tr>
</tbody>
</table>

## Session 2: Post-Analysis of Year 2000 Issues and Problems

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SESSION 2: POST-ANALYSIS OF YEAR 2000 ISSUES AND PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>OVERVIEW. John Lincoln, Consultant, Berryville, VA</td>
</tr>
<tr>
<td>2.2</td>
<td>YEAR 2000 (Y2K) TESTING AND COMPLIANCE IN THE NATIONAL WEATHER SERVICE—LESSONS LEARNED. Howard J. Diamond, NOAA/NWS, Silver Spring, MD</td>
</tr>
<tr>
<td>39</td>
<td>YEAR 2000 (Y2K) DATA ANALYSIS AND CONTINGENCY PLANNING TO ENSURE CONTINUED INTERNATIONAL WEATHER DATA RECEIPT AT THE NATIONAL WEATHER SERVICE INTO THE NEW MILLENIUM. Howard J. Diamond, NOAA/NWS, Silver Spring, MD</td>
</tr>
<tr>
<td>2.4</td>
<td>Y2K TESTING AND AWIPS: LESSONS LEARNED. Michelle E. Drew, Litton/PRC, McLean, VA; and M. Tankersley</td>
</tr>
</tbody>
</table>

* Manuscript not available

v
TABLE OF CONTENTS

16TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY

SESSION 3: ISSUES, TECHNOLOGY, AND APPLICATIONS OF IIPS IN MODELING AND SIMULATION

* 3.1 AIR FORCE DIRECTORATE OF WEATHER'S JOINT ROLE AS THE DOD MODELING AND SIMULATION EXECUTIVE AGENT FOR AIR AND SPACE NATURAL ENVIRONMENT. Fred P. Lewis, United States Air Force, Washington, DC (Invited Presentation)

* 3.2 DEPARTMENT OF DEFENSE MODELING AND SIMULATION: AN INTRODUCTION TO FACETS OF ENVIRONMENTAL SUPPORT. Ronald D. Haynes, Dynamics Research Corp., Scott AFB, IL; and D. Lucas (Invited Presentation)

42 3.3 ADVANCED CLIMATE MODELING AND ENVIRONMENTAL SIMULATIONS (ACMES): BRINGING DOD CLIMATOLOGICAL SUPPORT INTO THE 21ST CENTURY. Matthew K. Doggett, Air Force Combat Climatology Center, Asheville, NC

46 3.4 THE INCORPORATION OF HIGH RESOLUTION CLIMATOLOGICAL DATA INTO ENVIRONMENTAL TACTICAL DECISION AIDS. John R. Hummel, ANL, Argonne, IL; and A. P. Campbell, M. L. Kehrer, G. R. Lurie, and K. L. Simunich

50 3.5 CLOUD IMPACTS FOR AGGREGATE MILITARY SIMULATIONS USING CSSM STATISTICS. Joel B. Mozer, U.S. Air Force Research Lab., Hanscomb AFB, MA; and G. P. Seeley, S. C. Gordon, and D. J. Smallley

54 3.6 THE INTEGRATED OCEAN PROJECT. Richard A. Allard, NRL, Stennis Space Center, MS; and K. Miles and M. D. Earle

58 3.7 PROVIDING PHYSICALLY CONSISTENT ENVIRONMENTAL DATA IN SUPPORT OF DOD MODELING AND SIMULATION. Gary B. McWilliams, DoD Modeling and Simulation Executive Agent for the Air and Space Natural Environment, Asheville, NC

* 3.8 THE MASTER ENVIRONMENTAL LIBRARY (MEL). Richard Siquig, NRL, Monterey, CA

62 3.9 THE SYNTHETIC ENVIRONMENT DATA REPRESENTATION AND INTERCHANGE AND SPECIFICATION (SEDRIS). Robert M. Cox, SAIC, Orlando, FL; and J. R. Schaefer

* 3.10 THE ENVIRONMENTAL SCENARIO GENERATOR. Steve Lowe, SAIC, Virginia Beach, VA; and E. Kihn and R. Siquig

* 3.11 JOINT WEATHER IMPACT SYSTEM (JWIS) ARCHITECTURE. Bruce Thompson, Air Force Weather, Washington, DC

66 3.12 VISUALIZATION TECHNIQUES FOR APPLICATIONS OF HIGH-RESOLUTION NUMERICAL WEATHER MODELS. Lloyd A. Treinish, IBM Thomas J. Watson Research Center, Yorktown Heights, NY; and Z. D. Christidis

70 3.13 TOOLS FOR TAILORING THE SYNTHETIC NATURAL ENVIRONMENT. Peter S. Dailey, Litton/TASC, Inc., Reading, MA; and T. A. Hutchinson and S. O. Ouzts

* 3.14 NUCLEAR, BIOLOGICAL, AND CHEMICAL HAZARD PREDICTION MODELING: A NEW APPROACH. Richard B. Bensinger, Litton-TASC, Reading, MA; and J. A. Shorter

74 3.15 THE ENVIRONMENTAL WORKBENCH—AN INTERACTIVE 3D ANALYSIS AND VISUALIZATION TOOL FOR METEOROLOGY AND ENVIRONMENTAL APPLICATIONS. Dennis A Moon, SSESCO, Inc., Shoreview, MN; and W. A. Lyons

SESSION 4: APPLICATION OF IIPS IN FORECASTING

4.1 OVERVIEW

* Manuscript not available
TABLE OF CONTENTS

16TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY

PAGE
78  4.2  APPLICATIONS OF THE BATTLESCALE FORECAST MODEL FOR THE ARMY. Jeffrey E. Passner, U.S. Army Research Lab., White Sands Missile Range, NM; and R. E. Dumais, Jr. and D. P. Sauter
82  4.3  MODELS, FORECASTERS, AND INTERACTIVE FORECAST PREPARATION IN THE NEW MILLENNIUM. David P. Ruth, NOAA/NWS/TDL, Silver Spring, MD
86  4.4  GENERATING WATCHES, WARNINGS, AND ADVISORIES USING INTERACTIVE FORECAST PREPARATION. Kenneth S. Sperow, NOAA/NWS/TDL, Silver Spring, MD; and R. K. Meiggs, W. J. Goodman, and W. D. Jiang
90  4.5  GENERATING WATCH, WARNING, AND ADVISORY BROADCAST SCRIPTS FOR THE NOAA WEATHER RADIO USING INTERACTIVE FORECAST PREPARATION. Patrick V. Laybe, NOAA/NWS/TDL, Silver Spring, MD; and K.S. Sperow and R. K. Meiggs
94  4.6  MANAGING PRODUCT IMPROVEMENT IN THE INTERACTIVE FORECAST PREPARATION SYSTEM. John L. Schattel, Jr., NOAA/NWS/TDL, Silver Spring, MD; and R. K. Meiggs
98  4.7  GENERATING MARINE FORECASTS USING INTERACTIVE FORECAST PREPARATION. Matthew R. Peroutka, NOAA/NWS/TDL, Silver Spring, MD; and J. E. Calkins
102  4.8  THE ANALYSIS AND INTERPRETATION OF THREE-DIMENSIONAL LIGHTNING FLASH INFORMATION. Martin J. Murphy, Global Atmospherics, Inc., Tucson, AZ; and K. L. Cummins and L. M. Maier
106  4.9  FINAL PERFORMANCE EVALUATION OF THE AUTOMATED LIGHTNING DETECTION AND REPORTING SYSTEM (ALDARS). Kenneth A. Kraus, FAA, Washington, DC; and T. A. Seliga and J. R. Kranz
110  4.10 DEVELOPMENT OF PROCESSING SOFTWARE FOR THE GLOBAL THEATER WEATHER ANALYSIS AND PREDICTION SYSTEM (GTWAPS). Chris Franks, Harris Corp., Bellevue, NE; and C. F. Meier, Jr. and R. T. Williams
114  4.11 USING SYMMETRIC MULTIPROCESSING (SMP) ON A MASSIVELY PARALLEL PROCESSING (MPP) SYSTEM TO SUPPORT MESO-SCALE WEATHER MODELING FOR THE GLOBAL THEATER WEATHER ANALYSIS AND PREDICTION SYSTEM (GTWAPS). Keith H. North, IBM, Omaha, NE; and J. D. Benson, J. Tuccillo, and R. T. Williams, Jr.
124  4.13 AN EXAMINATION OF BATTLESCALE FORECAST MODEL INITIALIZATIONS OVER COMPLEX TERRAIN. Werner E. Cook, Univ. of Oklahoma, Norman, OK; and J. S. Greene, W. S. Lyons, K. D. Sterling, P. A. Haines, and D. I. Knapp
124  4.14 DEVELOPING NEW METHODS FOR AVIATION WEATHER FORECAST PRODUCTION. Frederick J. Foss, NOAA/NWS/AWC, Kansas City, MO; and D. R. Frank, J. H. Henderson, and D. R. Rodenhuis
128  4.15 NATIONAL WEATHER SERVICE SAFESEAS—UPDATE ON A NEW MARINE/COASTAL MONITORING AND FORECASTING CAPABILITY FOR AWIPS. Paul A. Hirschberg, NOAA/NWS, Silver Spring, MD; S. B. Smith and M. M. Mercer
132  4.16 THE BENEFITS OF VISUAL MULTI-SOURCE, MULTI-RESOLUTION DATA ANALYSIS AND FUSION. Alfred M. Powell, Jr., Autometric, Inc., Springfield, VA; and P. A. Zuzolo
136  4.17 HIGH VOLUME METOC CHART PRODUCTION USING BEOWULF TECHNOLOGY. Earl V. Ravid, FNMOC, Monterey, CA; and S. Lowder

SESSION 5: UNIDATA APPLICATIONS AND EXTENSIONS

5.1  OVERVIEW

* Manuscript not available
# Table of Contents

## 16th International Conference on Interactive Information and Processing Systems (IIPS)
### for Meteorology, Oceanography, and Hydrology

<table>
<thead>
<tr>
<th>PAGE</th>
<th>139</th>
<th>5.2</th>
<th>UNIDATA: A TALE OF TWO NETWORKS. David W. Fulker, UCAR, Boulder, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.3</td>
<td>USING REALTIME UNIDATA PRODUCTS IN THE VERNER SUOMI VIRTUAL MUSEUM. Thomas M. Whittaker, CIMSS/Univ. of Wisconsin, Madison, WI; and S. Ackerman</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>5.4</td>
<td>CURRENT METEOROLOGICAL DATA ACQUISITION ISSUES. Robert P. Kambic, Unidata/UCAR, Boulder, CO; and E. R. Davis, J. Weber, and T. Yokkas</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>5.5</td>
<td>THE IMPORTANCE OF UNIDATA SUPPORT TO PLYMOUTH STATE COLLEGE. James P. Koermer, Plymouth State College, Plymouth, NH</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>5.6</td>
<td>SATELLITE IMAGE ANALYSIS IN SUPPORT OF ATMOSPHERIC CHEMISTRY CAMPAIGNS: EXAMPLES OF UNIDATA'S IMPACT ON INTERDISCIPLINARY GRADUATE RESEARCH AND EDUCATION. Jennie L. Moody, Univ. of Virginia, Charlottesville, VA; and O. R. Cooper and A. J. Wimmers</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>5.7</td>
<td>UNIDATA'S PATH FOR NOAAPORT DATA DISTRIBUTION. Steven R. Chiswell, Unidata/UCAR, Boulder, CO; and M. Schmidt</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>5.8</td>
<td>PENN STATE AND WEATHER ANALYSIS: THE UNIDATA AGE. Arthur A. Person, Penn State Univ., University Park, PA; and G. S. Young</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>5.9</td>
<td>CUSTOM METEOROLOGICAL FORECASTS AND NOWCASTS IN SUPPORT OF ASTRONOMICAL OPERATIONS AT MAUNA KEA IN SUPPORT OF ASTRONOMICAL OPERATIONS AT MAUNA KEA. Steven Businger, Univ. of Hawaii, Honolulu, HI; and R. Knabb, D. Simons, and R. J. Wainscoat</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>5.10</td>
<td>FUTURE DIRECTIONS FOR METEOROLOGICAL DATA DISTRIBUTION. John L. Caron, Unidata/UCAR, Boulder, CO; and E. R. Davis, D. R. Murray, and R. K. Rew</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>5.11</td>
<td>THE NWS/COMET CASE STUDY LIBRARY IN THE NEW MILLENNIUM. Elizabeth Mulvihill Page, NOAA/NWS, Boulder, CO; and D. Kiessling and J. Weber</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>5.12</td>
<td>TOWARD A GEOSCIENCES COMPUTER LABORATORY. Edward E. Hindman, City College of New York, New York, NY; and S. D. Gedzelman, J. C. Steiner, R. M. Kahn, and S. J. Richards</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>5.13</td>
<td>AN EXAMPLE OF UNIDATA'S FUTURE IN NEW SOFTWARE: THE VisAD COMPETENT ARCHITETURE FOR COLLABORATIVE DATA ANALYSIS AND VISUALIZATION. William Hibbard, Univ. of Wisconsin, Madison, WI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.14</td>
<td>AN EXAMPLE OF UNIDATA'S FUTURE IN COLLABORATIVE DATA ACCESS: HIGH-RESOLUTION DOPPLER RADAR VOLUMES IN REAL TIME. Kelvin Droegemeier, Univ. of Oklahoma, Norman, OK</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>5.15</td>
<td>FUTURE DIRECTIONS FOR UNIDATA APPLICATIONS. Russell K. Rew, UCAR, Boulder, CO; and J. L. Caron, S. R. Emmerson, and D. R. Murray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.16</td>
<td>A GEMPACK SCRIPT FOR ESTIMATING DIABATIC HEATING. Patrick S. Market, Univ. of Missouri, Columbia, MO; and J. T. Moore</td>
<td></td>
</tr>
</tbody>
</table>

**SESSION 6: TECHNOLOGY AND TECHNIQUE DEVELOPMENT AT LABORATORIES AND IN INDUSTRIES ASSOCIATED WITH METEOROLOGY, HYDROLOGY AND OCEANOGRAPHY**

<table>
<thead>
<tr>
<th>6.1</th>
<th>OVERVIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
</tr>
</tbody>
</table>

* Manuscript not available
# TABLE OF CONTENTS

**16TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY**

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SECTION</th>
<th>TITLE</th>
<th>AUTHORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>6.5</td>
<td>SOFTWARE DEVELOPMENT FOR SURFACE WATER QUALITY MODELING</td>
<td>M. Lahlou, Tetra Tech, Inc., Fairfax, VA; and J. Hamrick, Z. Ji, J. Ouyang, M. Morton, J. Shen, and W. D. Tate</td>
</tr>
<tr>
<td>172</td>
<td>6.6</td>
<td>TARGET ACQUISITION WEATHER SOFTWARE (TAWS)</td>
<td>Jeffrey S. Morrison, Litton/TASC, Reading, MA; and R. B. Bensinger, C. V. Gilbert, M. J. Gouveia, R. B. Turkington, J. L. Wylie, and P. Tattelman</td>
</tr>
<tr>
<td>174</td>
<td>6.7</td>
<td>PAPER WITHDRAWN</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>6.7A</td>
<td>PRELIMINARY EVALUATIONS OF USING LIGHTNING DATA TO IMPROVE OCEANIC CONVECTIVE FORECASTING FOR AVIATION</td>
<td>Alan Nierow, FAA, Washington, DC; and R. C. Showalter, F. R. Mosher, J. Jalicke, and K. L. Cummins</td>
</tr>
<tr>
<td>179</td>
<td>6.8</td>
<td>AN INTEGRATED METEOROLOGICAL MONITORING AND DISPLAY SYSTEM FOR EMERGENCY RESPONSE</td>
<td>Matthew J. Parker, Westinghouse Savannah River Co., Aiken, SC; and C. H. Hunter, L. C. Heavner, G. L. Snyder, and R. A. Mueller</td>
</tr>
<tr>
<td>183</td>
<td>6.9</td>
<td>COLLABORATIVE VIRTUAL ENVIRONMENTS AS A VISUAL ANALYSIS TOOL</td>
<td>Cathy M. Lascara, Old Dominion Univ., Norfolk, VA; and G. Wheless</td>
</tr>
<tr>
<td>183</td>
<td>6.10</td>
<td>GIS APPLICATIONS IN CLIMATE AND METEOROLOGY</td>
<td>Scott T. Shipley, Raytheon Systems Company, Lanham, MD</td>
</tr>
<tr>
<td>188</td>
<td>6.11</td>
<td>GETTING CRITICAL WEATHER AND FLOOD INFORMATION TO END-USERS: A COMPARISON OF THE INTEGRATED WEATHER EFFECTS DECISION AID (IWEDA) AND THE LOCAL DATA ACQUISITION AND DISSEMINATION (LDAD) SYSTEMS</td>
<td>Christopher R. Adams, CIRA/Colorado State Univ., Fort Collins, CO; and K. Eis</td>
</tr>
</tbody>
</table>

**SESSION 7: EUROPEAN APPLICATIONS: OBSERVING SYSTEMS, COMMUNICATIONS SYSTEMS, ANALYSIS AND FORECASTING SYSTEMS, DISSEMINATION SYSTEMS TO SPECIAL SERVICES NEEDED TO SERVE THE SURFACE TRANSPORTATION INDUSTRY** (Including Transportation Management Centers And Traffic Flow Control)

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SECTION</th>
<th>TITLE</th>
<th>AUTHORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>187</td>
<td>7.1</td>
<td>OVERVIEW</td>
<td>Horst Bottger, ECMWF, Reading, Berks., UK</td>
</tr>
<tr>
<td>190</td>
<td>7.2</td>
<td>HORACE—THE EXPANDING ROLE OF WAKE-UP CALLS</td>
<td>Alan M. Radford, UK Met Office, Bracknell, Berks., UK</td>
</tr>
<tr>
<td>194</td>
<td>7.3</td>
<td>OPERATIONAL FORECASTING USE OF OBJECTIVE ANALYSIS TECHNIQUES</td>
<td>Philip H. Dominy, UK Met Office, Bracknell, Berks., UK</td>
</tr>
<tr>
<td>194</td>
<td>7.4</td>
<td>TASKS SUPERVISION AT ECMWF</td>
<td>Baudouin Raoult, ECMWF, Reading, Berks., UK</td>
</tr>
<tr>
<td>198</td>
<td>7.5</td>
<td>WEB BASED INTERFACE TO THE ECMWF ARCHIVE</td>
<td>Baudouin Raoult, ECMWF, Reading, Berks., UK</td>
</tr>
<tr>
<td>200</td>
<td>7.6</td>
<td>METEOSAT IMAGE AND GRID DATA ANALYSIS SYSTEM</td>
<td>Janusz M. Jasinski, Military Univ. of Technology, Warsaw, Poland; and K. Kroszczynski and I. A. Winnicki</td>
</tr>
<tr>
<td>204</td>
<td>7.7</td>
<td>FINITE ELEMENT METHOD IN HERMITIAN SPACES IN THE ANALYSIS OF IRREGULAR ATMOSPHERIC PROCESSES</td>
<td>Ireneusz A. Winnicki, Military Univ. of Technology, Warsaw, Poland; and J. M. Jasinski</td>
</tr>
<tr>
<td>208</td>
<td>7.8</td>
<td>USE OF NT BASED SYSTEMS BY THE UK MET OFFICE AND ITS CUSTOMERS</td>
<td>W. H. Moores, UK Met Office, Bracknell, Berks., UK; and P. Hayes</td>
</tr>
<tr>
<td>211</td>
<td>7.9</td>
<td>FORECASTS OF STRONG WIND AND IN-CLOUD ICING FOR THE DANISH GREAT BELT BRIDGE</td>
<td>Anna Hilden, Danish Meteorological Inst., Copenhagen, Denmark</td>
</tr>
<tr>
<td>214</td>
<td>7.10</td>
<td>THE EuroROSE PROJECT</td>
<td>Heinz Gunther, GKSS Research Centre, Geesthacht, Germany; and K. Reichert, K.-W. Gurgel, G. Evensen, L. Wyatt, J. Guddal, and J. C. Nieto Borge</td>
</tr>
</tbody>
</table>

* Manuscript not available
# Table of Contents

16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

<table>
<thead>
<tr>
<th>PAGE</th>
<th>JOINT SESSION J1 (Joint with the Fourth Symposium on Integrated Observing Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>J1.1  OVERVIEW OF OCEAN BASED BUOYS AND DRIFTERS: PRESENT APPLICATIONS AND FUTURE NEEDS. Nancy N. Soreide, NOAA/PMEL, Seattle, WA; and C. E. Woody and S. M. Holt</td>
</tr>
<tr>
<td>221</td>
<td>J1.2  AN OVERVIEW OF NATIONAL DATA BUOY CENTER PRODUCTS AND ACTIVITIES. Eric A. Meinl, NOAA/NDBC, Stennis Space Center, MS</td>
</tr>
<tr>
<td>225</td>
<td>J1.3  TAO AND PIRATA BUOY NETWORKS IN THE TROPICAL PACIFIC AND ATLANTIC. H. Paul Freitag, NOAA/PMEL, Seattle, WA; and M. J. McPhaden</td>
</tr>
<tr>
<td>227</td>
<td>J1.4  THE GLOBAL DRIFTER PROGRAM. Mark S. Swenson, NOAA/AOML, Miami, FL</td>
</tr>
<tr>
<td>229</td>
<td>J1.5  THE HAWAII SEA LEVEL OBSERVING SYSTEM. Bernard J. Kilonsky, Univ. of Hawaii, Honolulu, HI; and M. Merrifield</td>
</tr>
<tr>
<td>233</td>
<td>J1.6  THE SCRIPPS INSTITUTION OF OCEANOGRAPHY MARINE OBSERVATORY: A PLATFORM FOR REAL-TIME MEASUREMENTS OF THE COASTAL OCEAN AND ATMOSPHERE. Ian M. Brooks, SIO, La Jolla, CA; and D. P. Rogers and L. Regier</td>
</tr>
<tr>
<td>237</td>
<td>J1.7  SEAKEYS 1999: FLORIDA KEYS MONITORING INITIATIVE. J. C. Humphrey, Florida Inst. of Oceanography, Long Key, FL; and J. C. Ogden, S. L. Vargo, and J. Hendee</td>
</tr>
<tr>
<td>238</td>
<td>J1.8  THE COASTAL OCEAN MONITORING AND PREDICTION SYSTEM FOR WEST FLORIDA. M. Luther, Univ. of South Florida, Saint Petersburg, FL</td>
</tr>
<tr>
<td>239</td>
<td>J1.9  THE TEXAS AUTOMATED BUOY SYSTEM. Norman L. Guinasso, Jr., Texas A&amp;M Univ., College Station, TX; and F. J. Kelly, L. L. Lee, III, and R. D. Martin, Jr.</td>
</tr>
<tr>
<td>243</td>
<td>J1.10 THE ENVIRONMENTAL SENSORS PRESENTLY USED BY THE NATIONAL DATA BUOY CENTER. Eduardo D. Michelena, NOAA/NDBC, Stennis Space Flight Center, MS</td>
</tr>
<tr>
<td>244</td>
<td>J1.11 LONG TERM WATER LEVEL MEASUREMENTS USING GPS ON A BUOY. Gerald L. Mader, NOAA/NWSFO, Silver Spring, MD</td>
</tr>
<tr>
<td>238</td>
<td>J1.12 HISTORY OF GPS BUOY DEVELOPMENT AT THE UNIVERSITY OF COLORADO. George H. Born, Univ. of Colorado, Boulder, CO; and D. G. Kubitschek, K. Key, and B. Haines</td>
</tr>
<tr>
<td>243</td>
<td>J1.13 NEW INTERDISCIPLINARY TECHNOLOGIES AND THEIR POTENTIAL UTILIZATION IN OCEAN OBSERVING SYSTEMS. Tommy D. Dickey, Univ. of California, Santa Barbara, CA</td>
</tr>
<tr>
<td>244</td>
<td>J1.14 ADVANCES IN BUOY TECHNOLOGY FOR WIND/WAVE DATA COLLECTION AND ANALYSIS. S. G. P. Skey, Axys Environmental Systems, Sidney, BC, Canada; and T. Vandall</td>
</tr>
<tr>
<td>246</td>
<td>J1.15 TECHNOLOGY DEVELOPMENT TO COLLECT OCEAN OPTICS DATA AT NDBC WEATHER STATIONS. Catherine E. Woody, NOAA/NBDC, Stennis Space Center, MS</td>
</tr>
<tr>
<td>249</td>
<td>J1.16 MEASUREMENT OF OPTICAL VARIABILITY OF THE OCEAN FROM AUTONOMOUS PLATFORMS. M. Lewis, Dalhousie Univ., Halifax, NS, Canada</td>
</tr>
<tr>
<td>249</td>
<td>J1.17 PMEL MOORING OPERATIONS—SUPPORTING CLIMATE AND WEATHER FORECASTING. Hugh B. Milburn, NOAA/PMEL, Seattle, WA; and C. Meinig</td>
</tr>
<tr>
<td>253</td>
<td>J1.18 NEXT GENERATION OCEAN OBSERVING SYSTEMS: PART 1 PLATFORMS. James D. Irish, WHOI, Woods Hole, MA; and W. Paul and E. Mollo-Christensen</td>
</tr>
<tr>
<td>253</td>
<td>J1.19 NEXT GENERATION OCEAN OBSERVING SYSTEMS: PART 2, SENSORS/DATA SYSTEM/SAMPLING. James D. Irish, WHOI, Woods Hole, MA; and J. N. Shaumeyer and J. M. Borden</td>
</tr>
</tbody>
</table>

* Manuscript not available
**TABLE OF CONTENTS**

**16TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY**

<table>
<thead>
<tr>
<th>PAGE</th>
<th>J1.20</th>
<th>NEXT-GENERATION OCEAN OBSERVING SYSTEMS, PART 3: TWO-WAY, HIGH-SPEED, LOW EARTH ORBITING SATELLITE COMMUNICATIONS. Jeffrey N. Shaumeyer, Wavix, Inc., Rockville, MD; and J. M. Borden and J. D. Irish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J1.21</td>
<td>INTERNET ACCESS TO THE GOES DATA COLLECTION SYSTEM (DCS) WITH BUOY APPLICATIONS. Craig A. Keeler, Mitretek Systems, McLean, VA; and A. McMath and K. Metcalf</td>
</tr>
<tr>
<td></td>
<td>J1.22</td>
<td>A COOPERATIVE EFFORT TO TRANSMIT REAL-TIME MARINE OBSERVATIONS FOR METEOROLOGISTS. David B. Gilhousen, NOAA/NDBC, Stennis Space Center, MS; and H. E. Seim and P. Welsh</td>
</tr>
<tr>
<td></td>
<td>J1.23</td>
<td>ALL NEW INTERACTIVE WEB ACCESS TO TAO DATA USING JAVASCRIPT. W. H. Zhu, JISAO, Univ. of Washington, Seattle, WA; and E. F. Burger, D. C. McClurg, D. W. Denbo, and N. N. Soreide</td>
</tr>
<tr>
<td></td>
<td>J1.24</td>
<td>INFORMATION MANAGEMENT METHODOLOGY FOR PROFILING FLOAT OBSERVATIONS. Robert L. Molinari, NOAA/AOML, Miami, FL</td>
</tr>
<tr>
<td></td>
<td>J1.25</td>
<td>NOPP DRIFTER PROJECT—DRIFTER DATA IN THE K-12 CLASSROOM. Sarah E. Schoedinger, Consortium for Oceanographic Research &amp; Education, Washington, DC</td>
</tr>
<tr>
<td></td>
<td>J1.26</td>
<td>INTERACTIVE ACCESS TO DISTRIBUTED IN-SITU DATA IN A COLLABORATIVE TOOL ENVIRONMENT. Donald W. Denbo, NOAA/PMEL and JISAO/Univ.of Washington, Seattle, WA; and C. R. Windsor</td>
</tr>
<tr>
<td></td>
<td>J1.27</td>
<td>MOVING DATA AND INFORMATION FROM HERE TO THE FUTURE. William T. Turnbull, NOAA/HPCC, Silver Spring, MD</td>
</tr>
<tr>
<td></td>
<td>J1.28</td>
<td>COLLABORATIVE VIRTUAL ENVIRONMENTS AS A VISUAL ANALYSIS TOOL. Cathy M. Lascara, Old Dominion Univ., Norfolk, VA</td>
</tr>
<tr>
<td></td>
<td>J1.29</td>
<td>TECHNOLOGY TRENDS IN DISTRIBUTED DATA ACCESS AND VISUALIZATION. Nancy N. Soreide, NOAA/PMEL, Seattle, WA</td>
</tr>
</tbody>
</table>

**SESSION 8: MODERNIZATION ACTIVITIES OF GOVERNMENT AND COMMERCIAL WEATHER SERVICES**

<table>
<thead>
<tr>
<th>PAGE</th>
<th>8.1</th>
<th>OVERVIEW. Elbert W. (Joe) Friday, Jr., National Research Council, Washington, DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.2</td>
<td>INVITED PRESENTATION. John J. (Jack) Kelly, NOAA/NWS, Silver Spring, MD</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>INVITED PRESENTATION. Fred P. Lewis, USAF, Pentagon, Washington, DC</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>INVITED PRESENTATION. Kenneth E. Barbor, Naval Meteorology and Oceanography Command, Stennis Space Center, MS</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>THE WORLD AREA FORECAST SYSTEM: A PERSONAL AND HISTORIC PROSPECTIVE. Charles H. Sprinkle, NOAA/NWS, Silver Spring, MD</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>APPLICATION PROGRAMS THAT RELATE TO <a href="http://WWW">WWW</a>. Robert Landis, WMO, Geneva, Switzerland</td>
</tr>
<tr>
<td></td>
<td>8.7</td>
<td>AN INTERACTIVE INFORMATION AND PROCESSING SYSTEM TO ASSIST THE MILITARY WITH COMMAND AND CONTROL DECISION MAKING. David P. Sauter, Army Research Lab., White Sands Missile Range, NM</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>FAA AVIATION WEATHER RESEARCH PROGRAM IN SUPPORT OF NATIONAL AVIATION WEATHER INITIATIVES. Steven R. Albersheim, DOT, Washington, DC</td>
</tr>
<tr>
<td></td>
<td>8.9</td>
<td>AWIPS VALIDATION EFFORTS AT COMET. Craig S. Hartsough, UCAR, Boulder, CO; and L. Neilley, S. Jesuroga, and G. Byrd</td>
</tr>
</tbody>
</table>

* Manuscript not available
TABLE OF CONTENTS

16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

PAGE
*
8.10 GENERATING AUTOMATED MONTHLY, SEASONAL AND ANNUAL CLIMATOLOGICAL SUMMARIES IN THE AWIPS ERA. Jason P. Tuell, Litton/PRC, McLean, VA; and D. T. Miller, D. E. Murphy, B. E. Reed, and D. J. Zipper
287 8.11 DEVELOPMENT OF A DATA ARCHITECTURE FOR THE NWS HYDROLOGIC SERVICES PROGRAM. Geoffrey M. Bonnin, NOAA/NWS, Silver Spring, MD; and D. A. Urban
517 8.12 NATIONAL WEATHER SERVICE REQUIREMENTS PROCESS. Richard A. Lane, NOAA/NWS, Silver Spring, MD; and L. D. Johnson

SESSION 9: AWIPS

291 9.1 UPDATE ON COMMISSIONING THE ADVANCED WEATHER INTERACTIVE PROCESSING SYSTEM (AWIPS). Joseph Facundo, NOAA/NWS, Silver Spring, MD
295 9.2 AWIPS OPERATIONAL TEST AND EVALUATION (OT&E) FOR COMMISSIONING. Mary D. Buckingham, NOAA/NWS, Silver Spring, MD
299 9.3 THE AFOS PIL HEADER TO AWIPS WMO HEADER TRANSLATION TOOL (PIL-TO-WMO TRANSLATOR). Joseph Facundo, NOAA/NWS, Silver Spring, MD; and H. J. Diamond and D. Fineran
302 9.4 PRODUCT USAGE PATTERNS AT THE AWIPS BUILD 4.2 OT&E SITES. Patrice C. Kucera, NOAA/FSL, Boulder, CO; and S. P. Longmore and W. F. Roberts
306 9.5 PRODUCTS AVAILABILITY MONITORING SYSTEM (PAMS) AN INDISPENSABLE TEST AND EVALUATION TOOL FOR AWIPS. Khien Ba Nguyen, NOAA/NWS, Silver Spring, MD; and J. Facundo
310 9.6 APPLICATION OF PRODUCTS AVAILABILITY MONITORING SYSTEM (PAMS) TO AWIPS OT&E TESTING. Khien Ba Nguyen, NOAA/NWS, Silver Spring, MD; and J. Facundo
*
9.7 AWIPS VALIDATION EFFORTS AT COMET. Craig S. Hartsough, UCAR, Boulder, CO; and L. Neilley, S. Jesuroga, and G. Byrd
314 9.8 ADVANCED WEATHER INTERACTIVE PROCESSING SYSTEM (AWIPS) IN A NATIONAL CENTER. JoAnna L. Green, NOAA/NCEP/AWC, Kansas City, MO
*
9.9 THE CONSTRUCTION OF AN AWIPS SOFTWARE DEMONSTRATION SYSTEM FOR THE NWS SPACEFLIGHT METEOROLOGY GROUP. Mark John Keehn, NOAA/NWS, Houston, TX; and M. Magsig, J. Cowie, and D. Hines
*
9.10 AWIPS AND INTERNATIONAL USE. Terry C. Tarbell, Litton/PRC, McLean, VA; and K. Ward, H. Pomeranz, and J. Shea
*
9.11 GENERATING AUTOMATED MONTHLY, SEASONAL AND ANNUAL CLIMATOLOGICAL SUMMARIES IN THE AWIPS ERA. Jason P. Tuell, Litton/PRC, McLean, VA; and D. T. Miller, D. E. Murphy, B. E. Reed, and D. J. Zipper
*
9.12 AWIPS ACCELERATED DEPLOYMENT: A SUCCESS STORY WITH LESSONS LEARNED. Jack Hayes, Litton/PRC, McLean, VA; and S. Zareski, E. Moore, and D. Holloran
*
9.13 AWIPS AND THE NETWORK CONTROL FACILITY: STATUS AND A GUIDE TO TROUBLESHOOTING. Denis Meanor, Litton/PRC, McLean, VA; and D. Deitz and E. Moore
*
9.14 EVOLVING AWIPS TO MEET NWS REQUIREMENTS AND TO TAKE ADVANTAGE OF ADVANCING SCIENCE AND TECHNOLOGY. Ward R. Seguin, NOAA/NWS, AWIPS Program Office, Silver Spring, MD
524 9.15 AWIPS MOVING INTO OPERATIONS PHASE. Richard Thigpen, NOAA/NWS, Silver Spring, MD

* Manuscript not available
# Table of Contents

16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

## SESSION 10: MODERNIZATION: OBSERVING SYSTEMS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>CLIMATE DATA CONTINUITY WITH ASOS RAIN OBSERVATIONS. Thomas B. McKee, Colorado State Univ., Fort Collins, CO; and N. J. Doesken, J. Kleist, and N. L. Canfield</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>QUALITY CONTROL ALGORITHMS USED IN THE AUTOMATED SURFACE OBSERVING SYSTEM. M. Douglas Gifford, NOAA/NWS, Silver Spring, MD; and R. N. Parry</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>A STATUS REPORT ON ASOS CEILOMETER ALGORITHM DEVELOPMENT. Joseph V. Fiore, Jr., Raytheon ITSS, Sterling, VA</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>ALL-WEATHER PRECIPITATION ACCUMULATION GAUGE COMPARISONS WITH STANDARD NWS 8-INCH MANUAL GAUGE. Lynn J. Winans, Raytheon ITSS, Sterling, VA; and B. Taubvurtzel</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>PAPER TRANSFERRED TO SESSION 6, PAPER 6.7A.</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>THE VALUE OF WIND STANDARDS TO SOCIETY. Thomas J. Lockhart, Meteorological Standards Institute, Fox Island, WA</td>
<td></td>
</tr>
</tbody>
</table>

## POSTER SESSION P1: POSTER SESSION

<table>
<thead>
<tr>
<th>PAGE</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>336</td>
<td>AN INTERACTIVE WEB-BASED DATA ANALYSIS TOOL IN SUPPORT OF THE LAND DATA ASSIMILATION SCHEME (LDAS) PROJECT. Brian A. Cosgrove, NASA/GSFC, Greenbelt, MD; and P. R. Houser and J. K. Entin</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>view_hdf: VISUALIZATION AND ANALYSIS SOFTWARE FOR HDF FILES. Kam-Pui Lee, SAIC, Hampton, VA; and L. A. Hunt</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td>INTEGRATING THE AREAL MEAN BASIN ESTIMATED RAINFALL (AMBER) AND THE ADVANCED WEATHER INTERACTIVE PROCESSING SYSTEM (AWIPS) INTO WARNING OPERATIONS AT NWSFO PITTSBURGH DURING WIDESPREAD FLOODING IN SOUTHEAST OHIO ON 26-28 JUNE 1998. Josh Korotky, NOAA/NWSFO, Coraopolis, PA; and R. S. Davis and C. Strager</td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>WINDOWS NT MONITORING SOFTWARE WITH E-MAIL NOTIFICATION AND WEB REPORTING. Dale Reinke, CIRA/Colorado State Univ., Fort Collins, CO; and M. Hiatt and K. Eis</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>THE U.S. DEPARTMENT OF AGRICULTURE’S AWIPS LINK TO NOAAPORT. Bradley R. Rippey, USDA, Washington, DC; and A. Peterlin and D. A. Deprey</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>THE OPERATIONAL PRODUCTION PROCESS OF THE HORACE SYSTEM. David C. Marsh, UK Met Office, Bracknell, Berks., UK</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>CREATING FIRST GUESS FORECAST PRODUCTS AT NASA JOHNSON SPACE CENTER: APPLYING LAPS AND AWIPS FORECAST PREPARATION SYSTEM ALGORITHMS IN MCIDAS. Timothy D. Oram, NASA, Spaceflight Meteorology Group, Johnson Space Center, TX</td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>IMPACT OF THE PHENOMENON EL-NINO ON THE REGIME OF PRECIPITATION IN THE AREA OF THE MEDIUM AMAZON. David Mendes, CPTEC/INPE, Cachoeira Paulista, Sao Paulo, Brazil; and J. Cohen</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>THE COMMON OPERATIONS AND DEVELOPMENT ENVIRONMENT, STRUCTURE AND SYSTEM SERVICES. Thomas J. Ganger, Mitretek Systems, McLean, VA; and R. E. Saffle</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>NEXRAD PRODUCT IMPROVEMENT: OVERVIEW OF NEXRAD OPEN SYSTEMS PLANS. Robert E. Saffle, NOAA/NWS, Silver Spring, MD</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>VISUAL PROGRAMMING FOR THE WSR-88D COMMON OPERATIONS &amp; DEVELOPMENT ENVIRONMENT. Andrew D. Stern, Mitretek Systems, McLean, VA; and T. J. Ganger and R. E. Saffle</td>
<td></td>
</tr>
</tbody>
</table>

* Manuscript not available
# Table of Contents

## 16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

### P1.13 Mesoscale Modeling Investigation of Convective Initiation on the Gulf Coast. Paul J. Croft, Jackson State Univ., Jackson, MS; and R. S. Reddy and P. J. Fitzpatrick

### P1.14 Applications of Environment Canada’s Text-to-Voice System. Brian Bukoski, Environment Canada, Winnipeg, MB, Canada

### P1.15 The Polar Orbiting Satellite Sounding Evaluator. Michael E. Pettey, Raytheon Information Technology and Scientific Services, Lanham, MD; and C. E. Brown and M. C. Chalfant

### P1.16 Upper Wind Forecasts for NASA’s X-38 Flight Test Operations. Dan G. Bellue, NOAA/NWS, Johnson Space Center, TX; and C. Donohue

### P1.17 Forecasting Timing of Sea Breeze-Induced Thunderstorms at Cape Canaveral Air Station. Thomas G. Renwick, Air Force Inst. of Technology, Wright-Patterson AFB, OH; and C. A. Miner and W. P. Roeder

### P1.18 GOES Sounder Products—New Observations for Weather Forecasting. Donald G. Gray, NOAA/NESDIS, Suitland, MD


### P1.20 Heading for the Future—National Weather Service Communications Identifiers. Fred Branski, NOAA/NWS, Silver Spring, MD

### Session 11: Applications of IIPS Using Radar and Other Observation Platforms and Their Associated Data Processing Systems


### 11.2 Construction of Hail Swaths Using NIDS Data. Bradford R. Pugh, Univ. of Oklahoma, Norman, OK; and K. C. Crawford

### 11.3 Progress in the Use of Weather Data from Federal Aviation Administration (FAA) Radars in Combination with the WSR-88D. Robert E. Saffee, NOAA/NWS, Silver Spring, MD; and S. Shema, S. M. Holt, and L. D. Johnson


### 11.5 The Use of Code at the Operational Support Facility. Anderson White, NOAA/NWS, OSF, Norman, OK

### 11.6 Reusable Applications Software Components for the WSR-88D. Michael J. Istok, NOAA/NWS, Silver Spring, MD

### 11.7 NEXRAD Open Systems—Progress and Plans. Robert E. Saffee, NOAA/NWS, Silver Spring, MD; and L. D. Johnson

### 11.8 Overview of the Final ORPG Software Architecture. Michael Jain, NOAA/ERL/NSSL, Norman, OK; and Z. Jing

### 11.9 The Linear Buffer and Its Role in the WSR-88D Open System RPG. Zhongqi Jing, CIMMS/Univ. of Oklahoma and NOAA/NSSL, Norman, OK; and M. Jain

* Manuscript not available
# Table of Contents

## 16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

<table>
<thead>
<tr>
<th>PAGE</th>
<th>11.10</th>
<th>AN UPDATE AND LESSONS LEARNED THUS FAR ON THE WSR-88D OPERATIONAL SUPPORT FACILITY IMPLEMENTATION OF OPEN SYSTEMS ARCHITECTURE INTO THE WSR-88D SYSTEM. J. Rex Reed, NOAA/NWS/OSF, Norman, OK; and G. Cate</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>11.11</td>
<td>MITIGATION OF RANGE/VELOCITY AMBIGUITIES IN THE WSR-88D. D. S. Zrnic, NOAA/NSSL, Norman, OK; and M. Sachidananda, R. J. Doviak, J. Keeler, and C. Frush</td>
</tr>
<tr>
<td>406</td>
<td>11.12</td>
<td>ON THE WINDFINDING ACCURACY OF LORAN-C, GPS AND RADAR. Juhana Jaatinen, Vaisala Oyj, Helsinki, Finland; and J. B. Elms</td>
</tr>
<tr>
<td>410</td>
<td>11.13</td>
<td>COMPARISONS OF OBSERVER REPORTS OF THUNDERSTORMS WITH SIMILAR REPORTS DERIVED FROM NATIONAL LIGHTNING DETECTION NETWORK DATA. Thomas A. Seliga, Volpe National Transportation Systems Center, Cambridge, MA; and K. A. Kraus, J. Canniff, and D. A. Hazen</td>
</tr>
<tr>
<td>*</td>
<td>11.14</td>
<td>A NEW RADAR DISPLAY SYSTEM. Michael A. Steinberg, AccuWeather, Inc., State College, PA; and H. Margusity and C. Canning</td>
</tr>
</tbody>
</table>

## Session 12: Applications of Decision Support Tools in the Use and Leverage of the Internet

<table>
<thead>
<tr>
<th>PAGE</th>
<th>12.1</th>
<th>OVERVIEW. Donald Mock, NOAA/CDC, Boulder, CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>414</td>
<td>12.2</td>
<td>THE INTERNET AS A SOURCE OF WEATHER INFORMATION. Daniel Kottlowski, AccuWeather, Inc., State College, PA; and J. Candor and J. Ferrell</td>
</tr>
<tr>
<td>416</td>
<td>12.3</td>
<td>LEVERAGING THE INTERNET TO AID DECISION MAKING DURING HAZARDOUS WEATHER EVENTS. Kevin A. Kloesel, Oklahoma Climatological Survey, Norman, OK; and K. C. Crawford, R. McPherson, D. A. Morris, R. Jesuroga, and C. Subramaniam</td>
</tr>
<tr>
<td>418</td>
<td>12.4</td>
<td>USE OF A &quot;COMPOSER&quot; FORM TO SPEED THE CREATION OF ONLINE SATELLITE METEOROLOGY TUTORIALS. Thomas F. Lee, NRL, Monterey, CA; and J. Kent</td>
</tr>
<tr>
<td>*</td>
<td>12.5</td>
<td>PAPER WITHDRAWN</td>
</tr>
<tr>
<td>422</td>
<td>12.6</td>
<td>JAVA SERVLET TECHNOLOGY TO ENHANCE WEB ACCESS TO REAL-TIME AND RETROSPECTIVE ENVIRONMENTAL DATA. Willa H. Zhu, JISAO/Univ. of Washington, Seattle, WA; and E. F. Burger</td>
</tr>
<tr>
<td>426</td>
<td>12.7</td>
<td>DISTRIBUTED OBJECT TECHNOLOGY TO SUPPORT WEB ACCESS OF HETEROGENEOUS DATA AND INFORMATION SOURCES. Willa H. Zhu, JISAO/Univ. of Washington, Seattle, WA; and L. C. Sun</td>
</tr>
<tr>
<td>430</td>
<td>12.8</td>
<td>WORKING WITH EXTENSIBLE MARKUP LANGUAGE. Thomas B. Passin, Mitretek Systems, McLean, VA</td>
</tr>
<tr>
<td>432</td>
<td>12.9</td>
<td>USING A RELATIONAL DATABASE AND THE EXTENSIBLE MARKUP LANGUAGE TO STORE AND DISTRIBUTE CLIMATE METADATA. Roland H. Schweitzer, NOAA/CDC and CIRES/Univ. of Colorado, Boulder, CO</td>
</tr>
<tr>
<td>436</td>
<td>12.10</td>
<td>TRANSFORMING EXTENSIBLE MARKUP LANGUAGE DOCUMENTS WITH XSLT. Thomas B. Passin, Mitretek Systems, McLean, VA</td>
</tr>
<tr>
<td>439</td>
<td>12.11</td>
<td>VRML TECHNIQUES AND TOURS: 3D EXPERIENCES OF OCEANS AND ATMOSPHERES. Christopher W. Moore, JISAO/Univ. of Washington, Seattle, WA; and N. N. Soreide, A. Hermann, C. M. Lascara, and G. Wheless</td>
</tr>
<tr>
<td>443</td>
<td>12.12</td>
<td>DEVELOPING COLLABORATIVE SOFTWARE TO SUPPORT THE AVIATION WEATHER CENTER'S COLLABORATIVE CONVECTIVE FORECAST PROJECT. Donald R. Frank, Research and Data Systems Corp., Kansas City, MO; and F. J. Fossw. E. Carle, and R. H. Hudson</td>
</tr>
</tbody>
</table>

* Manuscript not available
# Table of Contents

## 16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

### Session 13: Applications of IIPS Using Satellites, Other Observation Platforms, and Their Associated Data Processing Systems

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SESSION 13: APPLICATIONS OF IIPS USING SATELLITES, OTHER OBSERVATION PLATFORMS, AND THEIR ASSOCIATED DATA PROCESSING SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>447</td>
<td>THE NESDIS SATELLITE PRODUCT OVERVIEW DISPLAY. Stacy L. Bunin, Mitretek Systems, McLean, VA; and T. B. Passin, P. M. Taylor, and D. G. Gray</td>
</tr>
<tr>
<td>451</td>
<td>PLANS FOR NOAA'S GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITE (GOES) SYSTEM. Gerald J. Dittberner, NOAA/NESDIS, Suitland, MD</td>
</tr>
<tr>
<td>454</td>
<td>A WINDOWS NT-BASED GOES I-M DATA COLLECTION SYSTEM. Duane Whitcomb, CIRA/Colorado State Univ., Ft. Collins, CO; and D. Reinke, M. Hiatt, and K. Eis</td>
</tr>
<tr>
<td>13.4</td>
<td>UPDATED NWS AWIPS REQUIREMENTS FOR GOES/POES SATELLITE PRODUCTS. Donald G. Gray, NOAA/NESDIS, Suitland, MD; and J. J. Gurka and P. M. Taylor</td>
</tr>
<tr>
<td>13.5</td>
<td>PAPER TRANSFERRED TO SESSION 4, PAPER 4.17</td>
</tr>
<tr>
<td>458</td>
<td>NOAA POLAR PROGRAM PLANS FOR CONTINUOUS SATELLITE COVERAGE. Michael Mignogno, NOAA/NESDIS, Suitland, MD; and C. Nelson</td>
</tr>
<tr>
<td>13.7</td>
<td>AN OVERVIEW OF NESDIS POLAR-ORBITING SATELLITE DATA PROCESSING AND NWS POES AWIPS REQUIREMENTS. Pamela M. Taylor, NOAA/NESDIS, Suitland, MD</td>
</tr>
<tr>
<td>462</td>
<td>INTERACTIVE VALIDATION AND TUNING OF SATELLITE CLOUD PROPERTY RETRIEVAL ALGORITHMS. Gary Gustafson, AER, Cambridge, MA; and D. Peduzzi, M. Plonski, and B. Shaw</td>
</tr>
<tr>
<td>464</td>
<td>DETECTION AND TRACKING OF VORTICES AND SADDLE POINTS FROM SST DATA. Qing Yang, LBNL, Berkeley, CA; and B. Parvin</td>
</tr>
<tr>
<td>468</td>
<td>REAL-TIME CLOUD DEPICTION INTEGRATION INTO THE ARMY'S BATTLEFIELD MANEUVER CONTROL SYSTEM. Ronald F. Fournier, TASC, Inc., Reading, MA; and R. B. Bensinger and J. J. Fox III</td>
</tr>
<tr>
<td>13.11</td>
<td>INTERACTIVE TOOLS TO SUPPORT A PROTOTYPE HIGH-RESOLUTION CLOUD ANALYSIS AND FORECAST SYSTEM. Brent L. Shaw, The Aerospace Corp., Offutt AFB, NE; and D. C. Peduzzi, M. P. Plonski, and B. H. Thomas</td>
</tr>
<tr>
<td>470</td>
<td>MSIV: A TOOL FOR INTERACTIVE VISUALIZATION AND ANALYSIS OF MULTISPECTRAL SATELLITE IMAGES. Robert P. d'Entremont, AER, Cambridge, MA; and J. B. Collins and J. T. Bunting</td>
</tr>
<tr>
<td>478</td>
<td>THE NATIONAL WEATHER SERVICE OPERATIONAL REQUIREMENTS FOR THE EVOLUTION OF FUTURE NOAA OPERATIONAL GEOSTATIONARY SATELLITES. James J. Gurka, NOAA/NWS, Silver Spring, MD; and J. N. Heil</td>
</tr>
<tr>
<td>482</td>
<td>DEVELOPMENT OF INTERACTIVE CLOUD HEIGHT AND SKEW-T DIAGRAM ALGORITHMS FOR AWIPS. Larry J. Hinson, NOAA/NCEP/AWC, Kansas City, MO; and F. R. Mosher</td>
</tr>
<tr>
<td>13.16</td>
<td>INFORMATION SYSTEM ON REAL-TIME QUICKSCAT AND TRMM OBSERVATIONS. Wenqing Tang, JPL, Pasadena, CA; and W. T. Liu</td>
</tr>
<tr>
<td>13.18</td>
<td>THE NOAA/NESDIS HAZARD MAPPING SYSTEM. Stephen D. Ambrose, NOAA/NESDIS, Washington, DC; and G. Stephens</td>
</tr>
</tbody>
</table>

* Manuscript not available
## Table of Contents

### 16th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology

#### Session 14: Applications of IIPS in Climatology

<table>
<thead>
<tr>
<th>PAGE</th>
<th>14.1 RAPIDLY EXPANDING USES OF CLIMATE DATA AND INFORMATION IN AGRICULTURE AND WATER RESOURCES: CAUSES AND CHARACTERISTICS OF NEW APPLICATIONS. Stanley A. Changnon, ISWS, Champaign, IL; and K. E. Kunkel</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>14.2 IMPLEMENTATION OF THE NOAAPORT DATA ARCHIVE AND RETRIEVAL SYSTEM (NDARS) AT THE NATIONAL CLIMATIC DATA CENTER. Glenn K. Rutledge, NOAA/NCDC, Asheville, NC; and A. Stanley, E. Page, L. Spayd, and J. Brundage</td>
</tr>
<tr>
<td>492</td>
<td>14.3 THE CLIMATE ZONE—AN AUSTRALIAN INTERACTIVE WEB-BASED SYSTEM. Anne K. Brewster, Bureau of Meteorology, Melbourne, Vic., Australia; and A. Mavromatis and L. M. Hollis</td>
</tr>
<tr>
<td>496</td>
<td>14.4 THE MIDWESTERN CLIMATE CENTER CLIMATE PROFILER: AN INTERNET-BASED SYSTEM FOR INTERPRETING CLIMATE OUTLOOKS. Michael A. Palecki, ISWS, Champaign, IL; and J. R. Angel</td>
</tr>
<tr>
<td>500</td>
<td>14.5 APPROACHES TO USER AUTHENTICATION AT A CLIMATE RESEARCH WEB SITE. Julia A. Collins, NOAA/CDC and CIRES/Univ. of Colorado, Boulder, CO</td>
</tr>
<tr>
<td>502</td>
<td>14.6 NATIONAL CLIMATE EXTREMES COMMITTEE’S EVALUATION OF THE REPORTED 1,140 INCH NATIONAL SEASONAL SNOWFALL RECORD AT THE MOUNT BAKER, WASHINGTON SKI AREA. Robert J. Leffler, NOAA/NWS, Silver Spring, MD; and A. H. Horvitz, M. Changery, R. Downs, K. T. Redmond, and G. Taylor</td>
</tr>
<tr>
<td>505</td>
<td>14.7 NATIONAL WEATHER SERVICE COOPERATIVE OBSERVER PROGRAM INITIATIVES. Robert J. Leffler, NOAA/NWS, Silver Spring, MD.; and A. H. Horvitz</td>
</tr>
</tbody>
</table>

* Manuscript not available