Microbiology and Dissolution Mechanisms in Bioleaching

Bioleaching Processes for Gold, Copper and Non-Sulfide Ores
TABLE OF CONTENTS

Microbiology and Dissolution Mechanisms in Bioleaching

Importance of exopolymers from *Thiobacillus ferrooxidans* and *Leptospirillum ferrooxidans* for bioleaching .. 1
Gherke T., Hallman R. and Sand W.

Morphological and physical aspects of attachment of *Thiobacillus ferrooxidans* to pyrite and sulfur ... 13
Blake R., Lyles M.M. and Simmons R.

Electrophoretic mobility of *Thiobacillus ferrooxidans* oxidizing Fe$^{2+}$, S0 and sulfide minerals ... 23
Karavaiko G.I., Sakhno T.V., Emelyanov V.M., Philinova N.I. and Pivovarova T.A.

Development of special strains of *Thiobacillus ferrooxidans* for enhanced bioleaching of sulphide minerals ... 33
Modak J.M and Natarajan K.A.

Iron-oxidizing heterotrophic acidophiles: ubiquitous novel bacteria in leaching environments ... 47
Johnson D.B., Bacelar-Nicolau P., Bruhn D.F. and Roberto F.F.

Bacterial behavior and evolution of surface oxidized phases during arsenopyrite oxidation by *Thiobacillus ferrooxidans* ... 57
Monroy-Fernandez M.G., Musini C., de Donato P., Berthelin J. and Marton P.

Effect of thermophilic microorganisms on the electrochemical behavior of the chalcopyrite ... 67
Muñoz J., Gomez C., Figueroa M., Ballester A., Gonzalez P. and Blásquez M.L.

Carbon and energy limitations in the continuous cultivation of *Thiobacillus ferrooxidans* ... 77
Acevedo F., Gemina J.C. and Gutierrez S.
Influence of ferrous iron concentrations on the toxicity of arsenic compounds during Thiobacillus ferrooxidans cultivation.
Teixeira M C, Ventura M A, Barbi S N, Nicoli J R, and Brandao R L.

Bioleaching of covellite by individual or combined cultures of Thiobacillus ferroxidans and Thiobacillus thiooxidans.
Donati E, Curutchet G, Pogliani C, and Tedesco P.

Sulphur oxidation by Thiobacillus thiooxidans in presence of iron (III).
Donati E, Curutchet G, Pogliani C, and Tedesco P.

Biochemical changes in Thiobacillus ferrooxidans growing on arsenopyrite.
Hurtado J E, and Berastain A

The oxidation of arsenopyrite by ferric ion.
Malatt K, and Ralph D

In-situ video microscopic technique for visualization and control of bacterial leaching activity on thin synthetic sulfide films.
Bärtels C C, Rojas-Chiapana J A, and Tributsch H.

Bioleaching of pyrite, evolution of porosity and specific surface area.
Zheri M, and Frenay J

The role of bacterial ferrous iron oxidation in the bio-oxidation of pyrite.
Bonn M, Hansford G S, and Heijnen J J.

The toxic effect of chloride ions on Thiobacillus ferrooxidans.
Lawson E N, Nicholas C S, and Pellai H.

Sulfur oxidation by iron-grown Thiobacillus ferrooxidans, and sulfur grown Thiobacillus ferrooxidans and Thiobacillus thiooxidans.
Curutchet G, Ramirez S, Mateo A M, Porro S, and Alonso-Romanowski S.
Bioleaching Processes for Gold, Copper and Non-Sulfide Ores

The demand for biotechnology in mining in the 21st century. .. 185
 Lawrence R W and Poulin R.

Applications of biotechnology in the mining industry in Australasia. 197
 Ritchie A I M, Kelley B C and Pollard D M.

A bioleaching survey of North American copper ores .. 207
 Hammack R W, Edenborn H M and Brickett L A.

Bioleaching of low grade copper sulphide ore in experimental heap at Malanjkhand 219
 Ray S K, Mullukutla S R P and Gupta R C.

Acid and biological leaching of a black shale from Toolse, Estonia. 229
 Tasa A, Garcia O Jr, Bigham J M, Vuoren A and Tuovinen O H.

Comparison of performance for continuous bio-oxidation of refractory gold ore flotation concentrates. ... 239
 Dew D W.

Biooxidation-heap pretreatment technology for processing lower grade refractory gold ores. 253
 Bnerley J A, Wan R Y, Hill D L and Logan T.

Biorotor® a new development for biohydrometallurgical processing. 263
 Lot G, Trois P and Rossi G.

Bioleaching of copper concentrate by *Thiobacillus ferroxidans* at increasing pulp density ... 273
 Escobar B, Godoy I, Pardo E and Wiertz J.

Influence of solvent extraction reagents on the activity of *Thiobacillus ferroxidans* and *Leptospirillum ferroxidans*. 283
 Bosecker K.

Leaching of a copper ore by microbiological production of acid and oxidant media using two bioreactors. ... 293
 Donati E, Lavalle L, de la Fuente V, Chiacchiarini P, Giaveno A and Tedesco P

Metal solubilization from the polymetallic G.M.D.C. concentrate by bioleaching .. 301
 Dave S R, Wakte P S, Menon A G and Vora S B.

Influence of the ions (Ag⁺, Bi³⁺) in the process of bioleaching of a copper concentrate from the Spanish pyritic belt by thermophilic microorganisms. Rubio A., Gimeno A., and Garcia F.J.

Bioleaching of zinc from zinc silicate residue by *Thiobacillus ferrooxidans*. Sukapun J., Thiravetyan P., and Tantcharoen M.

Studies of copper recovery by bacterial leaching/SX/EW for Arapiraca ore reserve. Torres V.M., Neto J.D., and Junior A.V.

Red mud leaching with fungal metabolites. Tarasova I., Khavski N.N., Khairulhna R.T., Karavaiko G.I., and Dudeney A.W.L.

Mechanism for bioleaching of zinc silicate residues by organic acid producing microorganisms. Tungkaviveskul T., Thiravetyan P., and Tantcharoen M.

Weathering of pisolitic bauxite by heterotrophic bacteria. Ehrlich H.L., Wickert L.M., Noteboom D., and Doucet J.

A technical feasibility study of bioleaching of manganiferous minerals by heterotrophic mixed microorganisms. Veglio F., Beolchini F., Ubaldini S., Abbruzzese C., and Toro L.

Pilot scale microbial heap leaching of gold from a refractory ore at the Zlata Mine, Bulgaria. 425
Groudev S N., Spasova I L., Groudeva V I. and Ivanov I M.

Mathematical modelling and optimization of bacterial leaching plants 437
Crundwell F K.

Two-dimensional model of heat and gas transport and mineral oxidation in copper bioleaching dump 447
Casas J M., Martinez J., Moreno L. and Vargas T.

Modelling of in-situ stope leaching 459
Ritchie A I M., Panetis G. and Gibson D G

Bioleaching of a cobaltiferous pyrite optimization and process flowsheet conception 471
Monn D., Ollivier P. and Han J M.

Bacterial leaching applied to a sulfide ore of copper from Salobo mine, Carajas-PA-Brazil 483
Gomes F J. and Frenay J.

Copper biorecovery optimization in high-temperature air-lift reactors 493
Calhau S., Nunes N., Moura J. and Duarte J C.