Selected Papers on
Upconversion Lasers

Editor
Timothy R. Gosnell
Los Alamos National Laboratory

Brian J. Thompson
General Editor, SPIE Milestone Series
Selected Papers on
Upconversion Lasers

Contents

v Preface
T.R. Gosnell

xvii Introduction
T.R. Gosnell

PART I
EARLY HISTORY

Section 1
Seminal Papers

5 Solid state infrared quantum counters
N. Bloembergen (Physical Review Letters 1959)

7 Fluorescence excitation by the absorption of two consecutive photons

9 Cooperative sensitization of luminescence in crystals activated with rare earth ions
V.V. Ovsyakin, P.P. Feofilov (Soviet Physics JETP Letters 1966)

11 Electronique Quantique.—Compteur quantique par transfert d’énergie de Yb$^{3+}$ à
Tm$^{3+}$ dans un tungstate mixte et dans un verre germanate

14 Infrared-pumped visible laser

PART II
BULK
UPCONVERSION
LASERS

Section 2
Infrared
Upconversion-
Pumped
Erbium Lasers

23 Upconversion-pumped infrared erbium laser

33 Ion-pair upconversion pumped laser emission in Er$^{3+}$ ions in YAG, YLF, SrF$_2$, and CaF$_2$ crystals

42 Threefold upconversion laser at 0.85, 1.23, and 1.73 μm in Er:YLF pumped with a 1.53 μm Er glass laser
Section 3
Visible
Erbium-Based
Upconversion
Lasers
121 Upconversion laser in BaY$_2$F$_8$:Er 5% pumped by ground-state and excited-state absorption
 R.A. McFarlane (Journal of the Optical Society of America B 1994)
131 Green upconversion continuous wave Er$^{3+}$:LiYF$_4$ laser at room temperature
133 Spectroscopy and green upconversion laser emission of Er$^{3+}$-doped crystals at room temperature
143 Er$^{3+}$:YAlO$_3$ upconversion laser
154 Green Er$^{3+}$:YLiF$_4$ upconversion laser at 551 nm with Yb$^{3+}$ codoping: a novel pumping scheme

Section 4
Thulium-Based Upconversion Lasers

159 Blue-green (450-nm) upconversion Tm$^{3+}$:YLF laser
 Dinh C. Nguyen, George E. Faulkner, Michael Dulick (Applied Optics 1989)
162 Blue upconversion thulium laser
172 New laser channels of the Tm$^{3+}$ ion
175 Blue continuously pumped upconversion lasing in Tm:YLiF$_4$
178 Upconversion-pumped blue laser in Tm:YAG
 B.P. Scott, F. Zhao, R.S.F. Chang, N. Djeu (Optics Letters 1993)
181 Two step pumped YLF:Tm blue upconversion laser
 A. Knüpfer, E. Heumann, V. Ostroumov, G. Huber, V. Lupei, B. Chai (Journal de Physique IV 1994)
185 Upconversion laser emission from Yb$^{3+}$-sensitized Tm$^{3+}$ in BaY$_2$F$_8$

Section 5
Neodymium- and Praseodymium-Based Upconversion Lasers

193 Violet cw neodymium upconversion laser
196 Photon avalanche upconversion laser at 644 nm
199 Continuous-wave Pr,Yb:LiYF$_4$ upconversion laser in the red spectral range at room temperature
PART III
UPCONVERSION
FIBER LASERS

Section 6
Erbium-Based
Fiber Lasers

211 Efficient up-conversion pumping at 800 nm of an erbium-doped fluoride fibre laser operating at 850 nm

213 Upconversion pumped green lasing in erbium doped fluorozirconate fibre
T.J. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, D. Szebesta (Electronics Letters 1991)

216 Tunable green upconversion erbium fibre laser

218 CW room temperature upconversion lasing in Er\(^{3+}\)-doped fluoride glass fiber
Kazuyuki Hirao, Shinichi Todoroki, Naohiro Soga (Journal of Non-Crystalline Solids 1992)

224 Low threshold, diode pumped operation of a green, Er\(^{3+}\) doped fluoride fibre laser

226 Green upconversion erbium-doped fibre amplifiers pumped into \(^{4}I_{1/2}\): a numerical simulation
Didier Pean, Paul Urquhart, Jean-Christophe Favreau (Optics Communications 1994)

236 11.7 mW green InGaAs-laser-pumped erbium fibre laser
D. Piehler, D. Craven (Electronics Letters 1994)

238 Generation of intense green light through amplified spontaneous emission in Er\(^{3+}\)-doped germanosilicate single-mode optical fiber pumped at 1.319 \(\mu m\)

243 Rare earth doped fluoride fibre lasers using direct-coated dielectric mirrors

255 850 nm upconversion lasing in Er\(^{3+}\) doped Z.B.L.A. fibers
A. Saiissy, E. Maurice, G. Monnom, S. Staroske, G. Baxter (Journal de Physique III 1995)

Section 7
Holmium-Based
Fiber Lasers

267 Room temperature cw tunable green upconversion holmium fibre laser

269 Upconversion fibre lasers: comparison of theory and experiment
Graham R. Atkins, Mark G. Sceats, Simon B. Poole (Journal of Non-Crystalline Solids 1992)

276 Excitation spectra of the green Ho:fluorozirconate glass fiber laser
Section 8

Thulium-Based
Fiber Lasers

297 Blue upconversion fluorozirconate fibre laser

300 CW room-temperature blue upconversion fibre laser

302 Growth and fabrication of single crystal \(\text{Yb,}\text{Tm:BaY}_2\text{F}_8 \) fibres for upconversion visible laser operation

310 High power upconversion lasing at 810 nm, in \(\text{Tm:ZBLAN} \) fibre

312 Room-temperature continuous-wave upconversion laser at 455 nm in a \(\text{Tm}^{3+} \) fluorozirconate fiber

315 Thulium-doped \(\text{ZBLAN} \) blue upconversion fiber laser: theory
Franck Duclos, Paul Urquhart (Journal of the Optical Society of America B 1995)

320 Increased efficiency and decreased threshold in \(\text{Tm:ZBLAN} \) blue fiber laser co-pumped by 1.1-μm and 0.68-μm light

327 Laser diode pumped 106 mW blue upconversion fiber laser

330 Operation of diode laser pumped \(\text{Tm}^{3+} \) \(\text{ZBLAN} \) upconversion fiber laser at 482 nm

336 Compact, high power, modelocked upconversion laser using a thulium-doped \(\text{ZBLAN} \) fibre

338 All fibre laser system with 0.1 W output power in blue spectral range

340 Characterization and modeling of thulium:ZBLAN blue upconversion fiber lasers
R. Paschotta, P.R. Barber, A.C. Tropper, D.C. Hanna (Journal of the Optical Society of America B 1997)

346 Thulium:ZBLAN blue fiber laser pumped by two wavelengths
Genji Tohmon, Hisanao Sato, Jun Ohya, Tomoaki Uno (Applied Optics 1997)
352 230 mW of blue light from a thulium-doped upconversion fiber laser

Section 9

The Tm:ZBLAN Photodarkening Problem

Infrared-induced photodarkening in Tm-doped fluoride fibers
P.R. Barber, R. Paschotta, A.C. Tropper, D.C. Hanna (Optics Letters 1995)

Photoinduced absorption in thulium-doped ZBLAN fibers
P. Laperle, A. Chandonnet, R. Vallée (Optics Letters 1995)

Photodegradation of near-infrared-pumped Tm³⁺-doped ZBLAN fiber upconversion lasers
Ian J. Booth, Jean-Luc Archambault, Brian F. Ventrudo (Optics Letters 1996)

Photobleaching of thulium-doped ZBLAN fibers with visible light
P. Laperle, A. Chandonnet, R. Vallée (Optics Letters 1997)

Photosensitivity of rare-earth-doped ZBLAN fluoride glasses
Glen M. Williams, Tsung-Ein Tsai, Celia I. Merzbacher, E. Joseph Friebele (Journal of Lightwave Technology 1997)

Section 10

Praseodymium-Based Fiber Lasers

Dual-Wavelength Pumping

CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr³⁺-doped fluoride fibre

Laser-diode-pumped red and green up-conversion fibre lasers
D. Piehler, D. Craven, N. Kwong, H. Zarem (Electronics Letters 1993)

Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser

Efficient blue Pr³⁺-doped fluoride fibre upconversion laser
Y. Zhao, S. Poole (Electronics Letters 1994)

22 mW blue output power from a Pr³⁺ fluoride fibre upconversion laser
Yuxing Zhao, Simon Fleming, Simon Poole (Optics Communications 1995)

Pr³⁺ upconversion laser performance improvement by use of pump scavenging
Yuxing Zhao (Optics Letters 1995)

All-solid state and all-fibre blue upconversion laser
Y. Zhao, S. Fleming (Electronics Letters 1996)

Blue Pr³⁺-doped ZBLAN fiber upconversion laser
D.M. Baney, G. Rankin, Kok-Wai Chang (Optics Letters 1996)

A Pr³⁺-doped ZBLAN fibre upconversion laser pumped by an Yb³⁺-doped silica fibre laser
H.M. Pask, A.C. Tropper, D.C. Hanna (Optics Communications 1997)

An analytical model for Pr³⁺-doped fluoride fibre upconversion lasers
Yuxing Zhao (Optics Communications 1997)
Section 11

Neodymium-Based Fiber Lasers

455 Ultraviolet (381 nm), room temperature laser in neodymium-doped fluorozirconate fibre

457 Room-temperature fluorozirconate glass fiber laser in the violet (412 nm)

461 Appendix
463 Author Index
467 Subject Index