The 2nd International Cupola Conference Proceedings
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductory Remarks</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Seymour Katz, S. Katz Associates Inc.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compare the Cupola</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>F.T. Kaiser, Modern Equipment Company</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Foundry Coke Supply Beyond 2000</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Marty Dusel, Citizens Gas & Coke Co., Chairman of American Coke and Coal Chemicals Institute</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>What's New Now and in the Future for Cupola Systems</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Rod Schueller & Gunther Hauck, Modern Equipment Company</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Design Criteria and Case Studies</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Rick Rubin, Wrib Manufacturing</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Considerations and Design of a Melting Department</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>William Powell & Ned Ciesielczyk, Waupaca Foundry, Inc.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The Tecnored Process: A New Route to Produce Low Cost Liquid Iron</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Marcos Contrucci, L.C. Guedes, P.H. Costa, E.S. Marcheze, N. Jacomini, R. Fenilli, & J.C. D'Abreu; Tecnored</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oxygen - A Versatile Tool to Enhance Cupola Operations</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>D. Saha, T. Niehoff, S.P. Smith and O. Frielingsdorf; Air Products and Chemicals, Inc.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dehumidification of Cupola Blast Air: Overview and Case Study</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Adam W. San Solo, U.S. Foundry and Manufacturing Corporation</td>
<td></td>
</tr>
</tbody>
</table>
10 The Use of CaO-CaF$_2$ as an Effective Desulfurizer 107
Walt Chaput, Mike Prezkop & Ken Kosch; GM Powertrain Defiance Foundry

11 The AFS-DOE Cupola Process Model 123
Seymour Katz, S. Katz & Associates
Vladimir Stanek, Academy of Science of the Czeh Republic
Mark Bauer, GM Powertrain
Craig Landefeld, GM Global R&D Center

12 Neural Net Implementations of the Cupola Process Model 141
Denis Clark & Eric Larsen, Idaho National Engineering and Environmental Lab
Seymour Katz, S. Katz & Associates

13 Experimentation in Industrial Cupola 153
Paul King, U.S. DOE Albany Research Center

14 Feedback Control of a Cupola-Concepts and Experimental Results ... 165
Kevin Moore, Idaho State University
M. Abdelrahman, Tennessee Technological University
Eric Larsen & Denis Clark, Idaho National Engineering & Environmental Lab

15 Contribution to the Energy Balance of Cokeless, Natural Gas Fired Cupola Furnace (CLCF) 177
E. Schurmann, Technical University of Clausthal
M. Holtmann, Ingenieuruburo Fur Industrielle Warmetechnik
W. Hain, Eisenwerke F.W. Duker

16 New Ideas for Cupola Refractories Practice 189
Hugh P. Harbin & Elmer Reno, Reno Refractories

17 Refractories for Cupola Melting ... 213
David C. Williams, James A. Moody & Ying H. Ko, Allied Mineral Products, Inc.

18 A Refractory Technology Update for Cupola Wells & Slag Separators ... 239
Roger Timberlake, Magneco/Matrel, Inc.
Lee Doty, Auburn Foundry
19 KARO Cupola Process Analysis ... 253
 Dr.-Ing Hans-Gunther Rachner, Kuttner GmbH & Co. KG

20 State-of-the-Art Cupola Control Systems ... 265
 Mark Dunn, GM Powertrain Saginaw Metal Casting Operations

21 Recycling of Cupola Dust—Experimental Study of Two Processes: Injection & Pelletizing .. 273
 P. Godinot, Centre Technique Des Industries De La Founderie
 G. Ruffin, Pont A Mousson S.A.

22 Hot Blast Cupola With a Recuperator Using Ceramic Pellets as the Heat Exchange Medium ... 311
 Takashi Okabe, Etsuo Murata, & Hirotoshi Murata;
 Naniwa/Roki Co. Ltd.
 Toru Ishino & Hiroyuki Yoneda, Kinki University

23 Cupola and Melt Department Safety .. 331
 Dick Barnett, East Jordan Iron Works

24 Development of Maximum Achievable Control Technology (MACT) for Iron & Steel Foundries ... 335
 John Pleasant, U.S. Pipe & Foundry Company

25 Comparison of Wet vs. Dry Cupola Emission System:
 A Case Study .. 353
 David Kasun, Neenah Foundry Company

26 The Effect of Zinc and Alkalines on the Operation of Cupola Plants ... 359
 Dr. Michael Lemperle, Kuttner-GHW

27 Critical Factors in Metallics Supply for Iron and Steelmaking in the USA ... 371
 Ann DeWert, The David J. Joseph Company

28 Charge Materials for a Ductile Pipe Foundry .. 387
 Michael Barstow, U.S. Pipe & Foundry