Proceedings of
The 2nd International Workshop on
Adaptive Optics for Industry and Medicine

University of Durham, England
12 – 16 July 1999

Edited by
Gordon D. Love
University of Durham, England
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Optics for CO\textsubscript{2} Laser Material Processing</td>
<td>32</td>
</tr>
<tr>
<td>\textit{R. Schmiedl}</td>
<td></td>
</tr>
<tr>
<td>\textit{Diehl Stiftung &amp; Co., Germany}</td>
<td></td>
</tr>
<tr>
<td><strong>Ophthalmic Adaptive Optics</strong></td>
<td>37</td>
</tr>
<tr>
<td>Hartmann-Shack Wavefront Sensor in the Eye: Accuracy and Performance Limits</td>
<td>39</td>
</tr>
<tr>
<td>\textit{P. Artal, J.L. Aragon, P.M. Prieto, F. Vargas-Martin, E. Berrio}</td>
<td></td>
</tr>
<tr>
<td>\textit{Universidad de Murcia, Spain}</td>
<td></td>
</tr>
<tr>
<td>Single vs. Symmetric and Asymmetric Double-Pass Measurement of the Wavefront Aberration of the Human Eye</td>
<td>45</td>
</tr>
<tr>
<td>\textit{L. Diaz Santano Haro and J.C. Dainty}</td>
<td></td>
</tr>
<tr>
<td>\textit{Imperial College of Science, Technology &amp; Medicine, UK}</td>
<td></td>
</tr>
<tr>
<td>3-D Cataract Imaging System</td>
<td>51</td>
</tr>
<tr>
<td>\textit{L.J. Otten, P. Soliz, I. McMakin, Kestrel Corporation, USA}</td>
<td></td>
</tr>
<tr>
<td>\textit{A.H. Greenaway, P.M. Blanchard}</td>
<td></td>
</tr>
<tr>
<td>\textit{DERA, UK}</td>
<td></td>
</tr>
<tr>
<td>\textit{G. Ogawa}</td>
<td></td>
</tr>
<tr>
<td>\textit{New Mexico Eye Associates, USA}</td>
<td></td>
</tr>
<tr>
<td>Vision Through a Liquid-Crystal Spatial Light-Modulator</td>
<td>57</td>
</tr>
<tr>
<td>\textit{L.N. Thibos, X. Qi, D.T. Miller}</td>
<td></td>
</tr>
<tr>
<td>\textit{Indiana University, USA}</td>
<td></td>
</tr>
<tr>
<td>Requirements for Segmented, Spatial Light Modulators for Diffraction-Limited Imaging Through Aberrated Eyes</td>
<td>63</td>
</tr>
<tr>
<td>\textit{D.T. Miller, X. Hong, L.N. Thibos}</td>
<td></td>
</tr>
<tr>
<td>\textit{Indiana University, USA}</td>
<td></td>
</tr>
<tr>
<td>Measurement of the Eye's Aberrations \textit{in vivo}</td>
<td>69</td>
</tr>
<tr>
<td>\textit{M. Glanc, H. Gardette, K. Naoun, B. Bianchi, J.F. Gargasson}</td>
<td></td>
</tr>
<tr>
<td>\textit{Laboratorie de Biophysique de la Bision, France}</td>
<td></td>
</tr>
<tr>
<td>\textit{E. Gendron, P. Lena}</td>
<td></td>
</tr>
<tr>
<td>\textit{Observatoire de Paris, France}</td>
<td></td>
</tr>
</tbody>
</table>
Microscopy

Adaptive Aberration Correction in Ultrafast Scanning Multiphoton Confocal Microscopy

O. Albert, L. Sherman, M.H. Meunier, G. Mourou, T. Norris,
University of Michigan, USA
G. Vdovin
Technical University of Delft, Netherlands

Adaptive Optics in Confocal Microscopy

J.W. O'Byrne, P.W. Fekete, M.R. Arnison, M. Serrano,
H. Zhao, D. Philp, W. Sudiarta, C.J. Cogswell
University of Sydney, Australia

Wavefront Correctors

Performance Assessment and Applications of MEMS Adaptive Optics

R.K. Tyson
University of North Carolina, USA

The Active Micro Mirror: A New Adaptive Optical Micro-Component

G. Robert, L. Babadjian, S. Spirkovitch
ESIEE, France,
A. Coville
SFIM, France

Innovative Deformable Mirror Designs for Custom Applications

D.G. Bruns, D.G. Sandler
Trex Enterprises, USA

Modelling the Deformation of Adaptive Aspheric Optical Surfaces in the Bend and Polish Method of Manufacture

R.S. Chen, J. Maxwell
Imperial College of Science,
Technology & Medicine, UK

Current Performance Limits of Micromachined Membrane Deformable Mirrors

G. Vdovin
Technical University of Delft, The Netherlands
Modal Liquid Crystal Wavefront Correctors 123

G.D. Love, A.F. Naumov
University of Durham, UK
M. Yu. Loktev
P.N. Lebedev Institute, Russia
Igor Grualnik
Samara State University, Russia
Gleb Vdovin
Technical University of Delft, Netherlands

Characteristic of a Novel Small PZT Deformable Mirror 129

N. Ling, X. Rao, L. Wang, S. Jiao
Institute of Optics and Electronics, China

Large Adaptive Metal Mirrors 136

J.H. Lee, A.P. Doel, D.D. Walker
University College London, UK

Adaptive Optics for Testing Aspheric Surfaces 141

M. Daffner, St. Reichelt, H. Tiziani
Institut für Technische Optik, Universität Stuttgart

Intra-Cavity Adaptive Optics for Lasers 147

High-Power Solid-State Laser with Birefringence Compensation and Adaptive Resonator Mirror 149

N. Kugler, A. Vazquez
Laser-und Medizin-Technologie GmbH, Germany
H. Laabs, H. Weber
Optisches Institut der TU-Berlin, Germany

Simulation of Optical Resonators with Aberrations 155

I. Buske, U. Wittrock
FH-Muenster, Germany

Development of Adaptive Resonator Techniques for High-Power Lasers 163

L. Flath, J. An, J. Brase, C. Carrano, C.B. Dane, S. Fochs, R. Hurd, M. Kartz, R. Sawvel
Lawrence Livermore National Laboratory, USA
Some Methods of Intracavity Control of Spatial and Temporal Parameters of Industrial CO₂ Laser Beam

V.V. Samarkin
Institute on Laser and Information Technologies, Russia

Reduction of the Thermal Lens in Solid-State Lasers with Compensating Optical Materials

University of Berne, Switzerland

Enhanced Correction of Thermo-Optical Aberrations in Laser Oscillators

I. Moshe, S. Jackel
Soreq NRC, Israel

Active Correctors as the Alternative to Graded Phase Mirrors — CO₂ and YAG Laser Beam Formation

T.Y. Cherezova, S.S. Chesnokov, L.N. Kaptsov
Moscow State University, Russia
A.V. Kudryashov, V.V. Samarkin
Institute on Laser Information Technologies, Russia

Bimorph Mirrors for Correction and Formation of Laser Beams

A.V. Kudryashov, V.V. Samarkin
Institute on Laser Information Technologies, Russia

Wavefront Sensors

Apodized Micro-Lenses for Hartmann Wavefront Sensing

J.D. Mansell, R.L. Byer
Stanford University, USA
D.R. Neal
Wavefront Sciences Inc. USA

Linear Wavefront Sensor: A New Method for Wavefront Sensing

X. Levecq, S. Bucourt
Imagine Optic, France

Integration of a Hartmann-Shack Wavefront Sensor

D.W. de Lima Monteiro, G. Vdovin, P.M. Sarro
Technical University of Delft, Netherlands
Flexible Configuration of Wavefront Sensor and Reconstructors for Adaptive Optics Systems

B.M. Levine, A. Wirth, C. Standley
Adaptive Optics Associates, USA

Sub-Lens Spatial Resolution Shack-Hartmann Wavefront Sensing

J.D. Mansell, R.L. Byer
Stanford University, USA

Application of Shack-Hartmann Wavefront Sensors to Optical System Calibration and Alignment

D.R. Neal
Wavefront Sciences Inc. USA
J.D. Mansell
Stanford University, USA

Analysis of Wavefront Sensing Using a Common Path Interferometer Architecture

J. Glückstad, P.C. Mogensen
Risø National Laboratory, Denmark

An All Optical Wavefront Sensor for UV Lasers Applications

S.R. Restaino
USAF Research Laboratory USA
A.C. Bernstein
University of New Mexico, USA

Wavefront Sensing and Intensity Transport

E.N. Ribak, S. Vinikman
Technion-Israel Institute of Technology, Israel

Laser Wavefront Sensing Using the Intensity Transport Equation

S. Woods, P.M. Blanchard, A.H. Greenaway
DERA, UK

Correction of Non-Common Path Errors in an Adaptive Optics System

N.P. Doble, D.F. Buscher, G.D. Love, R. Myers
University of Durham UK

Field of View Widening in Non-Astronomical Adaptive Systems

A.V. Larichev, N.A. Iaitskova, V.I. Shmalhausen
Moscow State University, Russia
Adaptive Compensation for Time-Dependent Thermal Blooming with Local Extrema in the Space of Control Coordinates 278
  F. Yu. Kanev, L.N. Lavrinova V.P. Lukin
  Institute of Atmospheric Optics, Russia

Influence of Local Extrema on the Efficiency of Gradient Algorithms for Laser Beam Control 284
  F. Yu. Kanev, V.P. Lukin, L.N. Lavrinova
  Institute of Atmospheric Optics, Russia

Radial Shear White Light Phase Stepping Interferometry for Wavefront Sensing in Adaptive Optics 290
  A.R.D. Somervell, G.T. Bold, T.H. Barnes
  University of Auckland, New Zealand

Multi-Plane Imaging with a Distorted Diffraction Grating 296
  P.M. Blanchard, A.H. Greenaway
  DERA, UK

Adaptive Systems 303

A Low Cost Adaptive Optical System 305
  C. Paterson, I. Munro, J.C. Dainty
  Imperial College of Science, Technology & Medicine, UK

Analogue Correction for Distortions using Dynamic Holograms in Optically Addressed Liquid Crystal Modulators 311
  V.A. Berenberg, A.A. Leshchev, M.V. Vasil’ev, V. Yu Venediktov
  Research Institute for Laser Physics, Russia

Two-Wavelength Dynamic Holography and its Application in Adaptive Optics 317
  V. Yu Venediktov, V.A. Berenberg, A.A. Leshchev, M.V. Vasil’ev
  Research Institute for Laser Physics, Russia
  M. Gruneisen
  Air Force Research Laboratory, USA

Review of Wavefront Modulators and Sensors for Adaptive Optics 323
  N. Collings
  University of Cambridge, UK
Liquid Crystal Active Optics Correction Using Evolutionary Algorithms  
_**P. Birch, C. Chatwin, R. Young, M. Farsari**_
_University of Sussex, UK_

The ELECTRA Astronomical Adaptive Optics Instrument  
_University of Durham, UK_

Blind Optimization of Optical Power into a Single Mode Optical Fiber Using a MEMS Deformable Membrane Mirror  
_**M.L. Plett, D.W. Rush, P.R. Barbier, P. Polak-Dingels**_
_Laboratory for Physical Sciences, USA_

High Power Laser Diode to Fibre Coupling Using a Membrane Mirror  
_**F. Gonté, A. Courteville, E. Rochat, K. Haroud, N. Collings, R. Dändliker**_
_Institute of Microtechnology, Switzerland_
_G. Vdovin, S. Sakarya_
_Technical University of Delft, Netherlands_

Improvement of a Laser Communication Beam Using Adaptive Optics  
_Laboratory for Physical Sciences, USA_

Preliminary Results of Horizontal Path Length Propagation Experiments  
_**G.R.G. Erry, P. Harrison, P.M. Blanchard, A.H. Greenaway**_
_DER, UK_

Low-Order Adaptive Optics System for Free-Space Lasercom: Design and Performance Analysis  
_**K.H. Kudielka, Y. Hayano, W. Klaus, K. Araki, Y. Arimoto, J. Uchida**_
_Communication Research Laboratory, Japan_
_National Space Development Agency, Japan_

A High Precision System for Wavefront Control  
_**P. Jagourel, J.C. Sinquin, D. Waflard**_
_CILAS, France_
_X. Levecq, G. Dovillaire_
_Imagine Optic, France_
Development of a Curvature Adaptive Optics System for a Michelson Stellar Interferometer

C. Verinaud, A. Blazit, A. De Bonnevie
Observatoire de la Côte d’Azur, France

Blazed Holographic Optical Aberration Compensation

I. Percheron, J.T. Baker
Boeing North American Inc. USA
M. Gruneisen, T.Y. Martinez, D. Wick
USAF Research Labs, AFRL/DEBS, USA

Adaptive Optics in Laser Scanner Systems

E. Ellis, J.C. Dainty
Imperial College of Science, Technology & Medicine, UK

List of Delegates