RILEM

Third International Workshop on
High Performance Fiber
Reinforced Cement
Composites
(HPFRCC3)

Sponsored by RILEM, ACI, ACBM,
The University of Michigan and the University of Stuttgart

Mainz, Germany

May 16-19, 1999

EDITED BY
H.W. Reinhardt
Institut für Werkstoffe im Bauwesen,
University of Stuttgart, and Otto-Graf-Institut, Stuttgart, Germany
AND
A.E. Naaman
Department of Civil and Environmental Engineering,
The University of Michigan, Ann Arbor, USA

RILEM Publications S.A.R.L.
The Publishing Company of RILEM
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop</td>
<td>XVII</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>XIX</td>
</tr>
</tbody>
</table>

0. Setting the stage

H.W. REINHARDT
*University of Stuttgart and FMPA BW Otto-Graf-Institute
Stuttgart, Germany*
A.E. NAAMAN
University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, USA

PART ONE NEW CONCEPTS, NEW MATERIALS

1. Properties of self-levelling concrete reinforced by steel fibres

J. AMBROISE, S. ROLS, and J. PERA
Unité de Recherche Génie Civil - Matériaux, Institut National des Sciences Appliquées de Lyon, France

2. Advanced high strength fiber composites

P. BALAGURU, J.A. HAMMELL
Rutgers University, USA
R. LYON
FAA Technical Center, USA

3. Cementitious composites reinforced with textile fabrics

A. BENTUR and A. PELED
National Building Research Institute-Faculty of Civil Engineering, Technion, Israel Institute of Technology, Haifa, Israel

4. Phosphate bonding cements and their applications

N.S. GORINGE and I. MAXWELL
James Hardie & Coy Pty. Ltd. Granville, Australia
5. Short-fibre reinforced reactive powder concrete
 B.L. KARIHALOO and K. DE VRIESE
 Cardiff School of Engineering, Cardiff University, UK

6. Optimum design of high performance fibre-reinforced cement composites
 D. LANGE-KORNBAK
 Danish Building Research Institute, Denmark
 B.L. KARIHALOO
 Cardiff School of Engineering, Cardiff University, UK

7. Self-prestressed fiber reinforced cement composites
 A.E. NAAMAN
 University of Michigan, Ann Arbor, Michigan, USA.
 N. KRSTULOVIC-OPARA
 North Carolina State University, Raleigh, North Carolina, USA.

8. Formulation of Design Criteria for HPFRCC
 H. NAKAMURA
 Maeta Techno-Research, Inc., Sakata, Japan
 H. MIHASHI
 Tohoku University, Sendai, Japan

 Damage resistance and micromechanical analysis
 G. ORANGE
 Rhodia Recherches, Aubervilliers, France
 P. ACKER
 Direction R. & D. Lafarge, Paris, France
 C. VERNET
 Laboratoire Bouygues, Coignières, France

10. Scope of High Performance Fiber Reinforced Cement Composites
 S.P. SHAH, A. PELED, C.M. ALDEA and Y. AKKAYA
 NSF Science and Technology Center for Advanced Cement Based Materials, Northwestern University Evanston, USA

11. Impact of packing phenomena on the extent of the ITZ in plain and fibre concrete
 P. STROEVEN and M. STROEVEN
 Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands
12. Sandwich panels in construction with HPFRCC-faces: new possibilities and adequate modelling
J. WASTIELS
Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel, Belgium

13. Active fiber composites
S. WU
Air Force Office of Scientific Research, Bolling Air Force Base, Washington D.C., USA

PART TWO WORKABILITY, FRESH STATE

14. Fiber reinforced shotcrete: issues, challenges and opportunities
N. BANTHIA
University of British Columbia, Vancouver, Canada

15. Development and testing of self-compacting grout for the production of SIFCON
P.J.M. BARTOS and D.L. MARRS
Advanced Concrete & Masonry Centre, The University of Paisley, Scotland, UK

16. Interaction and packing of fibres: effects on the mixing process
C.W. HOY
Carl Bro Group, Scotland
P.J.M. BARTOS
Advanced Concrete & Masonry Centre, The University of Paisley, Scotland, UK

17. Viscosity and fracture toughness of fiber-reinforced cement slurries at elevated temperatures
C. MEYER and Y. WANG
Columbia University, New York, NY, USA
PART THREE LOADING AND FRACTURE

20. High performance user-friendly fiber reinforced composite under cyclic loading
P. BALAGURU
Rutgers University, USA
H.S. FRANKLIN
Bechtal Inc., San Francisco, USA

21. Behaviour of fibre reinforced concrete cracked section under sustained load
G. CHANVILLARD and O. ROQUE
DGCB/ENTPE, Lyon, France

22. Modelling the increase of ductility of HPC under compressive forces - a fracture mechanics approach
G. KÖNIG and L. KÜTZING
Institute of Concrete Structures and Building Materials, University of Leipzig, Germany
23. Fracture toughness of fiber-reinforced glass concrete
C. MEYER and T.M. MONAWAR
Columbia University, New York, NY, USA

24. Some Parametric Investigations of the Tensile Behavior of Slurry Infiltrated Mat Concrete (SIMCON)
A.F. OLUOKUN
Dept. of Civil Engineering, Northeastern University, Boston, USA
S.A.J. MALAK
Weidlinger Associates, USA

25. Constitutive model for prediction of flexural fatigue life and performance characteristics of polyolefin fiber reinforced concrete
V. RAMAKRISHNAN and C. SIVAKUMAR
South Dakota School of Mines and Technology, Rapid City, SD, U.S.A.

26. Fatigue strength of steel fibrous concrete in flexure
S.P. SINGH and S.K. KAUSHIK
Civil Engineering, University of Roorkee, Roorkee, India

27. Influence of tensile strength of steel fibre on toughness of high strength concrete
L. VANDERWAAL
Departement Burgerlijke Bouwkunde, K.U.Leuven, Belgium

PART FOUR BOND BEHAVIOUR, MODELLING

28. Spring network model of fiber-reinforced cement composites
J. BOLANDER
University of California, Davis, USA

29. A pullout model for hooked end steel fibres
A. VAN GYSEL
Institute for Higher Education in the Sciences and the Arts, De Nayer Institute, Belgium (formerly at the Magnel Laboratory for Concrete Research, University of Ghent, Belgium)
30. Interaction between steel reinforcement and engineered cementitious composites
V.C. LI and G. FISCHER
ACE-MRL, Department of Civil and Environmental Engineering, University of Michigan, USA

31. Fibers with slip hardening bond
A.E. NAAMAN
University of Michigan, Department of Civil and Environmental Engineering, Ann Arbor, USA

32. A finite element study of the influence of micro-fibres on the tensile strength of cement pastes
P. PIERRE, R. PLEAU and M. PIGEON
CRIB, Laval University, Sainte-Foy (Qué.), Canada

33. Bond and splitting in high performance concrete
G. ROSATI and S. CATTANEO
Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Italy

34. Steel fibre reinforcement at boundaries in concrete elements
P. STROEVEN
Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

35. Debonding behaviour of steel fibres with hooked ends
B. WEILER, C. GROSSE and H.W. REINHARDT
University of Stuttgart, Institute of Construction Materials, and Otto-Graf-Institute, Stuttgart, Germany

PART FIVE PHYSICAL PROPERTIES, TESTING, CHEMICAL ATTACK

36. On tension and fracture in thermally-damaged high-performance concrete: VHSC versus HSC
R. FELICETTI, P.G. GAMBAROVA, M.P. NATALI SORA
Milan University of Technology, Milan, Italy
F. CORSI, G. GIANNUZZI
ENEA-Italian Nat. Agency for Energy, Rome, Italy
37. Experimental sensitivity analysis of scatter in post cracking behaviour of SFRC
A.G. KOONIMAN and J.C. WALRAVEN
Delft University of Technology, The Netherlands

38. Effect of humic acid on flexural behavior of carbon fiber-reinforced cement pastes
Y. OHAMA, K. DEMURA and K. SUMI
College of Engineering, Nihon University, Koriyama, Japan

39. Electrical properties of carbon fiber reinforced concrete
F. REZA, G. BATSON, J.A. YAMAMURO
Civil and Environmental Engineering Department,
Clarkson University, Potsdam, NY, USA
J.S. LEE
Department of Civil and Environmental Engineering,
Hanyang University, Kyunggi-Do, Korea

40. Assessment of micromechanical properties of cementitious composites by microindentation
P. TRTIK and P.J.M. BARTOS
Advanced Concrete & Masonry Centre, The University of Paisley, Scotland, UK

41. Acoustic emission investigations of the damage zone in steel fibre reinforced beams
B. WEILER, C. GROSSE and H.W. REINHARDT
University of Stuttgart, Institute of Construction Materials, and Otto-Graf-Institute, Stuttgart, Germany

PART SIX STRUCTURAL ELEMENTS

42. Flexural behaviour of RC and PC beams with steel fibers
G. BALAZS, I. KOVACS and L. ERDELYI
Technical University of Budapest, Hungary
<table>
<thead>
<tr>
<th>Article Number</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>The flexural behaviour of over-reinforced high strength concrete beams containing fibers</td>
<td>G. CAMPIONE</td>
<td>Universita' di Palermo, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. MINDESS</td>
<td>University of British Columbia, Vancouver, Canada</td>
</tr>
<tr>
<td>44</td>
<td>Fibers as shear reinforcement for high strength reinforced concrete beams containing stirrups</td>
<td>G. CAMPIONE</td>
<td>Universita' di Palermo, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. MINDESS</td>
<td>University of British Columbia, Vancouver, Canada</td>
</tr>
<tr>
<td>45</td>
<td>Structural performance of beam elements with PVA-ECC</td>
<td>H. FUKUYAMA</td>
<td>Building Research Institute, Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y. MATSUZAKI, K. NAKANO</td>
<td>Science University of Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y. SATO</td>
<td>Fujita Corporation, Japan</td>
</tr>
<tr>
<td>46</td>
<td>Behaviour of fiber reinforced concrete slabs under static and impact loading</td>
<td>P. PARAMASIVAM, K.C.G. ONG and M. BASHEERKHAN</td>
<td>National University of Singapore, Singapore</td>
</tr>
<tr>
<td>47</td>
<td>A comparative study of sisal fiber reinforced concrete flexural members</td>
<td>M.R. RAMEY</td>
<td>University of California, Davis, CA, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.P.M. MWANGI</td>
<td>Buehler and Buehler Structural Engineers, Sacramento, CA, USA</td>
</tr>
<tr>
<td>48</td>
<td>Study on the anti-exploding characteristics of fiber reinforced cement based composite</td>
<td>W. SUN, G. PAN, H. YAN, C. QI and H. CHEN</td>
<td>Department of Materials Science and Engineering, Southeast University, Nanjing, China</td>
</tr>
</tbody>
</table>
49. Steel fibres to resist punching shear an engineering model to enhance durable service life
D.D. THEODORAKOPOULOS
University of Patras, Greece
R.N. SWAMY
University of Sheffield, England

PART SEVEN APPLICATIONS, REPAIR

50. High performance fibre concrete SIFCON for repairing environmental constructions
R. BREITENBÜCHER
Philipp Holzmann Bautechnik GmbH, Neu-Isenburg, Germany

51. Pile supported reinforced or prestressed SFRC ground slabs
H. FALKNER and U. GOSSLA
Institut für Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universität Braunschweig, Germany

52. DUCON, a durable overlay
S. HAUSER and J.D. WÖRNER
Institute for Static Analysis, Darmstadt Univ. of Technology, Germany

53. Performance of engineered cementitious composites in repair and retrofit: analytical estimates
P. KABELE, S. TAKEUCHI, K. INABA and H. HORII
The University of Tokyo, Japan

54. Use of SIMCON in seismic retrofit and new construction
N. KRSTULOVIC-OPARA
North Carolina State University, Raleigh, North Carolina, USA.

55. High performance concrete applications in precast and prestressed concrete bridge slabs
G. ROSATI
Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italy

Author index

Subject index